Long noncoding RNA lncARSR confers resistance to Adriamycin and promotes osteosarcoma progression.
Ontology highlight
ABSTRACT: One of the significant challenges for chemotherapy is the appearance of resistance to compounds. Although several signaling pathways have been implicated in the development of Adriamycin (ADM) resistance, mechanisms involved in ADM-resistant osteosarcoma progression remain unknown. The present study attempted to illustrate the role of long noncoding RNA ARSR (lncARSR) in the development of adapted ADM resistance. We found lncARSR overexpressed in the Adriamycin-resistant cell lines U2OS/ADM and MG63/ADM, accompanied with acquired multidrug resistance against to paclitaxel and cisplatin. Overexpression of lncARSR triggered rhodamine 123 efflux and survival, as well as the migration of Adriamycin-resistant cells. Inversely, the depletion of lncARSR promoted rhodamine 123 retention and apoptosis, while reducing the motility of ADM-resistant cells. Further investigation revealed that the upregulation of lncARSR enhanced multidrug resistance-associated protein-1 (MRP1), apoptosis inhibitor Survivin, and matrix metalloproteinase-2 (MMP2) through activating AKT. The reduction of lncARSR overcame the resistance to ADM in U2OS/ADM mouse model. The current study gained novel evidence for understanding the mechanisms underlying adaptive ADM resistance and provided rationales to improve clinical outcomes of refractory osteosarcoma.
SUBMITTER: Shen P
PROVIDER: S-EPMC7220921 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA