Unknown

Dataset Information

0

Neuroprotective Potential of Allium sativum against Monosodium Glutamate-Induced Excitotoxicity: Impact on Short-Term Memory, Gliosis, and Oxidative Stress.


ABSTRACT: This study evaluated the neuroprotective potential of Allium sativum against monosodium glutamate (MSG)-induced neurotoxicity with respect to its impact on short-term memory in rats. Forty male Wistar albino rats were assigned into four groups. The control group received distilled water. The second group was administered Allium sativum powder (200 mg/kg of body weight) orally for 7 successive days, then was left without treatment until the 30th day. The third group was injected intraperitoneally with MSG (4 g/kg of body weight) for 7 successive days, then left without treatment until the 30th day. The fourth group was injected with MSG in the same manner as the third group and was treated with Allium sativum powder in the same manner as the second group, simultaneously. Phytochemical analysis of Allium sativum powder identified the presence of diallyl disulphide, carvone, diallyl trisulfide, and allyl tetrasulfide. MSG-induced excitotoxicity and cognitive deficit were represented by decreased distance moved and taking a long time to start moving from the center in the open field, as well as lack of curiosity in investigating the novel object and novel arm. Moreover, MSG altered hippocampus structure and increased MDA concentration and protein expression of glial fibrillary acidic protein (GFAP), calretinin, and caspase-3, whereas it decreased superoxide dismutase (SOD) activity and protein expression of Ki-67 in brain tissue. However, Allium sativum powder prevented MSG-induced neurotoxicity and improved short-term memory through enhancing antioxidant activity and reducing lipid peroxidation. In addition, it decreased protein expression of GFAP, calretinin, and caspase-3 and increased protein expression of Ki-67 in brain tissues and retained brain tissue architecture. This study indicated that Allium sativum powder ameliorated MSG-induced neurotoxicity through preventing oxidative stress-induced gliosis and apoptosis of brain tissue in rats.

SUBMITTER: Hazzaa SM 

PROVIDER: S-EPMC7230314 | biostudies-literature | 2020 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Neuroprotective Potential of <i>Allium sativum</i> against Monosodium Glutamate-Induced Excitotoxicity: Impact on Short-Term Memory, Gliosis, and Oxidative Stress.

Hazzaa Suzan M SM   Abdelaziz Seham Ahmed Mohamed SAM   Abd Eldaim Mabrouk A MA   Abdel-Daim Mohamed M MM   Elgarawany Ghada E GE  

Nutrients 20200410 4


This study evaluated the neuroprotective potential of <i>Allium sativum</i> against monosodium glutamate (MSG)-induced neurotoxicity with respect to its impact on short-term memory in rats. Forty male Wistar albino rats were assigned into four groups. The control group received distilled water. The second group was administered <i>Allium sativum</i> powder (200 mg/kg of body weight) orally for 7 successive days, then was left without treatment until the 30th day. The third group was injected int  ...[more]

Similar Datasets

| S-EPMC4550798 | biostudies-literature
| S-EPMC7001228 | biostudies-literature
| S-EPMC3252734 | biostudies-literature
| S-EPMC6387171 | biostudies-literature
| PRJNA961362 | ENA
| PRJNA177851 | ENA
| PRJNA530360 | ENA
| PRJNA961699 | ENA
| PRJNA396885 | ENA
| PRJNA987033 | ENA