Project description:RATIONALE:While infants who are born extremely premature and develop bronchopulmonary dysplasia (BPD) have impaired alveolar development and decreased pulmonary diffusion (DLCO), it remains unclear whether infants born less premature and do not develop BPD, healthy premature (HP), have impaired parenchymal development. In addition, there is increasing evidence that pro-angiogenic cells are important for vascular development; however, there is little information on the relationship of pro-angiogenic cells to lung growth and development in infants. OBJECTIVE:and Methods Determine among healthy premature (HP) and fullterm (FT) infants, whether DLCO and alveolar volume (VA) are related to gestational age at birth (GA), respiratory support during the neonatal period (mechanical ventilation [MV], supplemental oxygen [O2], continuous positive airway pressure [CPAP]), and pro-angiogenic circulating hematopoietic stem/progenitor cells (CHSPCs). We measured DLCO, VA, and CHSPCs in infants between 3-33 months corrected-ages; HP (mean GA = 31.7 wks; N = 48,) and FT (mean GA = 39.3 wks; N =88). RESULT:DLCO was significantly higher in HP than FT subjects, while there was no difference in VA , after adjusting for body length, gender, and race. DLCO and VA were not associated with GA, MV and O2; however, higher values were associated with higher CHSPCs, as well as treatment with CPAP. CONCLUSION:Our findings suggest that in the absence of extreme premature birth, as well as BPD, prematurity per se, does not impair lung parenchymal development.
Project description:ObjectiveTo quantify and compare levels of potential biomarkers in neonates with (i) Bronchopulmonary dysplasia (BPD); (ii) BPD-associated pulmonary hypertension (BPD-PH); (iii) PH without BPD; and (iv) neonates without lung disease at ~36 weeks postmenstrual age.Study designMultiple potential biomarkers were measured in plasma samples of 90 patients using a multi-spot enzyme-linked immunosorbent assay. Statistical tests done included one-way ANOVA to compare levels of biomarkers between different groups.ResultsHigher levels of ICAM-1 were present in infants with BPD and correlated with its severity. Infants with BPD have significantly higher levels of ANG-2 and lower levels of ANG-1. Infants with PH have higher levels of: IL-6, IL-8, IL-10, and TNF-α. Infants with BPD-PH have significantly lower levels of MCP-1 and higher levels of IL-1β than infants with PH without BPD.ConclusionICAM-1 may be used as a specific biomarker for diagnosis of BPD and its severity.
Project description:More than 50 years after the first description of Bronchopulmonary dysplasia (BPD) by Northway, this chronic lung disease affecting many preterm infants is still poorly understood. Additonally, approximately 40% of preterm infants suffering from severe BPD also suffer from Bronchopulmonary dysplasia-associated pulmonary hypertension (BPD-PH), leading to a significant increase in total morbidity and mortality. Until today, there is no curative therapy for both BPD and BPD-PH available. It has become increasingly evident that growth factors are playing a central role in normal and pathologic development of the pulmonary vasculature. Thus, this review aims to summarize the recent evidence in our understanding of BPD-PH from a basic scientific point of view, focusing on the potential role of Fibroblast Growth Factor (FGF)/FGF10 signaling pathway contributing to disease development, progression and resolution.
Project description:Wnt signaling affects both bone modeling, which occurs during development, and bone remodeling, which is a lifelong process involving tissue renewal. Wnt signals are especially known to affect the differentiation of osteoblasts. In this review, we summarize recent advances in understanding the mechanisms of Wnt signaling, which is divided into two major branches: the canonical pathway and the noncanonical pathway. The canonical pathway is also called the Wnt/?-catenin pathway. There are two major noncanonical pathways: the Wnt-planar cell polarity pathway (Wnt-PCP pathway) and the Wnt-calcium pathway (Wnt-Ca² pathway). This review also discusses how Wnt ligands, receptors, intracellular effectors, transcription factors, and antagonists affect both the bone modeling and bone remodeling processes. We also review the role of Wnt ligands, receptors, intracellular effectors, transcription factors, and antagonists in bone as demonstrated in mouse models. Disrupted Wnt signaling is linked to several bone diseases, including osteoporosis, van Buchem disease, and sclerosteosis. Studying the mechanism of Wnt signaling and its interactions with other signaling pathways in bone will provide potential therapeutic targets to treat these bone diseases.
Project description:Bronchopulmonary dysplasia (BPD) is the chronic lung disease of preterm infants and still represents a major burden of prematurity. Several clinical risk factors for the onset of the disease are already known. In addition, some candidate genes have recently been identified. We set out to determine clinical as well as genetic risk factors for the development of BPD in the German population. 155 infants born with a gestational age < or = 28 at the tertiary neonatal Centre, Freiburg, were recruited. Clinical data were recorded from hospital charts. 47 children developed moderate or severe BPD. For genetic analyses, 37 polymorphisms within sixteen genes were genotyped on all children. The strongest epidemiological risk factor for BPD was birth weight, followed by low gestational age. Genetic association was detected with single polymorphisms within Tumour necrosis factor alpha, Toll like receptor 10 and vascular endothelial growth factor. The former two genes showed also association with BPD in haplotype analyses. In conclusion, association of BPD was far more convincingly found with a few clinical factors than with genetic polymorphisms. This underscores the genetic complexity of the disease. Furthermore, the identification of predisposing genetic polymorphisms might be hampered by the complex interaction between clinical and genetic factors.
Project description:Bronchopulmonary dysplasia (BPD), the chronic lung disease of prematurity, remains a major healthcare burden. Despite great progresses in perinatal medicine over the past decades, no cure for BPD has been found. The complex pathophysiology of the disease further hampers the development of effective treatment strategies, but recent insights into the biology of mesenchymal stem (MSCs) and progenitor cells in lung development and disease have ignited the hope of preventing or even treating BPD. The promising results of pre-clinical studies have lead to the first early phase clinical trials. However, these treatments are experimental and much more needs to be learned about the mechanism of action and manufacturing of MSCs. In this mini review, we briefly summarize the role of resident and exogenous MSCs in the development and treatment of BPD.
Project description:Bronchopulmonary dysplasia (BPD) is a major complication in prematurely born infants. Pulmonary hypertension (PH) associated with BPD (BPD-PH) is characterized by alveolar diffusion impairment, abnormal vascular remodeling, and rarefication of pulmonary vessels (vascular growth arrest), which lead to increased pulmonary vascular resistance and right heart failure. About 25% of infants with moderate to severe BPD develop BPD-PH that is associated with high morbidity and mortality. The recent evolution of broader PH-targeted pharmacotherapy in adults has opened up new treatment options for infants with BPD-PH. Sildenafil became the mainstay of contemporary BPD-PH therapy. Additional medications, such as endothelin receptor antagonists and prostacyclin analogs/mimetics, are increasingly being investigated in infants with PH. However, pediatric data from prospective or randomized controlled trials are still sparse. We discuss comprehensive diagnostic and therapeutic strategies for BPD-PH and briefly review the relevant differential diagnoses of parenchymal and interstitial developmental lung diseases. In addition, we provide a practical framework for the management of children with BPD-PH, incorporating the modified definition and classification of pediatric PH from the 2018 World Symposium on Pulmonary Hypertension, and the 2019 EPPVDN consensus recommendations on established and newly developed therapeutic strategies. Finally, current gaps of knowledge and future research directions are discussed. IMPACT: PH in BPD substantially increases mortality. Treatment of BPD-PH should be conducted by an interdisciplinary team and follow our new treatment algorithm while still kept tailored to the individual patient. We discuss recent developments in BPD-PH, make recommendations on diagnosis, monitoring and treatment of PH in BPD, and address current gaps of knowledge and potential research directions. We provide a practical framework, including a new treatment algorithm, for the management of children with BPD-PH, incorporating the modified definition and classification of pediatric PH (2018 WSPH) and the 2019 EPPVDN consensus recommendations on established and newly developed therapeutic strategies for BPD-PH.
Project description:The objective of this study is to review the candidate gene and genome-wide association studies relevant to bronchopulmonary dysplasia, and to discuss the emerging understanding of the complexities involved in genetic predisposition to bronchopulmonary dysplasia and its outcomes. Genetic factors contribute much of the variance in risk for BPD. Studies to date evaluating single or a few candidate genes have not been successful in yielding results that are replicated in GWAS, perhaps due to more stringent p-value thresholds. GWAS studies have identified only a single gene (SPOCK2) at genome-wide significance in a European White and African cohort, which was not replicated in two North American studies. Pathway gene-set analysis in a North American cohort confirmed involvement of known pathways of lung development and repair (e.g., CD44 and phosphorus oxygen lyase activity) and indicated novel molecules and pathways (e.g., adenosine deaminase and targets of miR-219) involved in genetic predisposition to BPD. The genetic basis of severe BPD is different from that of mild/moderate BPD, and the variants/pathways associated with BPD vary by race/ethnicity. A pilot study of whole exome sequencing identified hundreds of genes of interest, and indicated the overall feasibility as well as complexity of this approach. Better phenotyping of BPD by severity and pathophysiology, and careful analysis of race/ethnicity is required to gain a better understanding of the genetic basis of BPD. Future translational studies are required for the identification of potential genetic predispositions (rare variants and dysregulated pathways) by next-generation sequencing methods in individual infants (personalized genomics).
Project description:BACKGROUND:Bradycardia and oxygen desaturation episodes are common among preterm very low birth weight (VLBW) infants in the Neonatal Intensive Care Unit (NICU), and their association with adverse outcomes such as bronchopulmonary dysplasia (BPD) is unclear. METHODS:For 502 VLBW infants we quantified bradycardias (HR?<?100 for???4?s) and desaturations (SpO2?<?80% for???10?s), combined bradycardia and desaturation (BD) events, and percent time in events in the first 4 weeks after birth (32 infant-years of data). We tested logistic regression models of clinical risks (including a respiratory acuity score incorporating FiO2 and level of respiratory support) to estimate the risks of BPD or death and secondary outcomes. We then tested the additive value of the bradycardia and desaturation metrics for outcomes prediction. RESULTS:BPD occurred in 187 infants (37%). The clinical risk model had ROC area for BPD of 0.874. Measures of desaturation, but not bradycardia, significantly added to the predictive model. Desaturation metrics also added to clinical risks for prediction of severe intraventricular hemorrhage, retinopathy of prematurity and prolonged length of stay in the NICU. CONCLUSIONS:Oxygen desaturations in the first month of the NICU course are associated with risk of BPD and other morbidities in VLBW infants.
Project description:RationaleBronchopulmonary dysplasia is one of the most serious complications observed in premature infants. Thanks to microarray technique, expression of nearly all human genes can be reliably evaluated.ObjectiveTo compare whole genome expression in the first month of life in groups of infants with and without bronchopulmonary dysplasia.Methods111 newborns were included in the study. The mean birth weight was 1029 g (SD:290), and the mean gestational age was 27.8 weeks (SD:2.5). Blood samples were drawn from the study participants on the 5th, 14th and 28th day of life. The mRNA samples were evaluated for gene expression with the use of GeneChip® Human Gene 1.0 ST microarrays. The infants were divided into two groups: bronchopulmonary dysplasia (n=68) and control (n=43).ResultsOverall 2086 genes were differentially expressed on the day 5, only 324 on the day 14 and 3498 on the day 28. Based on pathway enrichment analysis we found that the cell cycle pathway was up-regulated in the bronchopulmonary dysplasia group. The activation of this pathway does not seem to be related with the maturity of the infant. Four pathways related to inflammatory response were continuously on the 5(th), 14(th) and 28(th) day of life down-regulated in the bronchopulmonary dysplasia group. However, the expression of genes depended on both factors: immaturity and disease severity. The most significantly down-regulated pathway was the T cell receptor signaling pathway.ConclusionThe results of the whole genome expression study revealed alteration of the expression of nearly 10% of the genome in bronchopulmonary dysplasia patients.