Project description:BACKGROUND:Recently we identified nasopharyngeal epithelium specific protein 1 (NESG1) as a potential tumor suppressor in nasopharyngeal carcinoma (NPC). The purpose of this study is to investigate the involvement of NESG1 in tumor progression and prognosis of human NPC. METHODOLOGY/PRINCIPAL FINDINGS:NESG1 protein expression in NPC was examined. Survival analysis was performed using Kaplan-Meier method. The effect of NESG1 on cell proliferation, migration, and invasion were also investigated. RESULTS:NESG1 expression was downregulated in atypical hyperplasia and NPC samples compared to normal and squamous nasopharynx tissues. Reduced protein expression was negatively associated with the status of NPC progression. Patients with lower NESG1 expression had a shorter overall survival and disease-free time than did patients with higher NESG1 expression. Multivariate analysis suggested NESG1 expression as an independent prognostic indicator for NPC patient survival. Proliferation, migration, and invasion ability were significantly increased in cell lines following lentiviral-mediated shRNA suppression of NESG1 expression. Microarray analysis indicated that NESG1 participated in multiple pathways, including MAPK signaling and cell cycle regulation. Finally, DNA methylation microarray examination revealed a lack of hypermethylation at the NESG1 promoter, suggesting other mechanisms are involved in suppressing NESG1 expression in NPC. CONCLUSION:Our studies are the first to demonstrate that decreased NESG1 expression is an unfavorable prognostic factor for NPC.
Project description:Analysis of differential expression genes in NESG1-overexpressed and negative nasopharyngeal carcinoma. NESG1 is a candidate tumor suppressor in NPC. Results provide insight into the molecular pathogenesis of NESG1 in NPC.
Project description:Analysis of differential expression genes in NESG1-overexpressed and negative nasopharyngeal carcinoma. NESG1 is a candidate tumor suppressor in NPC. Results provide insight into the molecular pathogenesis of NESG1 in NPC. NESG1 cDNA was transfected into NESG1-negative NPC 5-8F cells and affymetrix microarrays HG-U133_Plus_2 were used to analyze the differential genes in NESG1-overexpressed NPC cells and their control NESG1-negative NPC cells.
Project description:Oral squamous cell carcinoma (OSCC) is a common oral cancer; however, current therapeutic approaches still show limited efficacy. Our research aims to explore effective biomarkers related to OSCC. Gene expression profiles of paired OSCC tumor and paracancerous samples from The Cancer Genome Atlas (TCGA) were analyzed. mRNA and protein levels of KRT84 in OSCC cell line HSC-3 were measured by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot. KRT84 protein levels in OSCC tumor samples of different stages were determined by immunohistochemistry. Overall survival (OS) of OSCC samples was evaluated and association of multiple factors with OS was assessed. Compared with paracancerous samples, 4642 DEGs were identified in OSCC tumor samples. Among them, KRT84 expression level in OSCC tumor tissues was obviously decreased, which was validated in HSC-3 cells. KRT84 expression level showed decreasing tendency with the increase of tumor grade and stage. Patients with low KRT84 expression level had inferior OS independently of multiple factors. Besides, antigen processing and presentation pathway were significantly activated in OSCC samples with high KRT84 expression. Elevated KRT84 mRNA as well as protein levels were confirmed by RT-qPCR and Western blot in OSCC and normal cell lines, and immunohistochemistry in OSCC tumor and paracancerous tissues. Our study suggests KRT84 as a tumor suppressor and good prognostic indicator for OSCC, which might be significant for OSCC diagnosis and treatment.
Project description:Nasopharyngeal carcinoma (NPC) is a rare malignancy with unique genetic, viral and environmental characteristic that distinguishes it from other head and neck carcinomas. The clinical management of NPC remains challenging largely due to the lack of early detection strategies for this tumor. In our study, we have sought to identify novel genes involved in the pathogenesis of NPC that might provide insight into this tumor's biology and could potentially be used as biomarkers. To identify these genes, we studied the epigenetics of NPC by characterizing a panel of methylation markers. Eighteen genes were evaluated by quantitative methylation-specific polymerase chain reaction (PCR) in cell lines as well as in tissue samples including 50 NPC tumors and 28 benign nasopharyngeal biopsies. Significance was evaluated using Fisher's exact test and quantitative values were optimized using cut off values derived from receiver-operator characteristic curves. The methylation status of AIM1, APC, CALCA, deleted in colorectal carcinomas (DCC), DLEC, deleted in liver cancer 1 (DLC1), estrogen receptor alpha (ESR), FHIT, KIF1A and PGP9.5 was significantly associated with NPC compared to controls. The sensitivity of the individual genes ranged from 26 to 66% and the specificity was above 92% for all genes except FHIT. The combination of PGP9.5, KIF1A and DLEC had a sensitivity of 84% and a specificity of 92%. Ectopic expression of DCC and DLC1 lead to decrease in colony formation and invasion properties. Our results indicate that methylation of novel biomarkers in NPC could be used to enhance early detection approaches. Additionally, our functional studies reveal previously unknown tumor suppressor roles in NPC.
Project description:Recent studies demonstrated that long non-coding RNAs (lncRNAs) deregulated in many cancer tissues including nasopharyngeal carcinoma (NPC) and had critical roles in cancer progression and metastasis. In this study, we aimed to assess a lncRNA LINC01420 expression in NPC and explore its role in NPC pathogenesis. Our research revealed that the expression level of LINC01420 in NPC tissues were higher than nasopharyngeal epithelial (NPE) tissues. Moreover, NPC patients with high LINC01420 expression level showed poor overall survival. Knockdown LINC01420 inhibited NPC cell migration and invasion in vitro. In summary, LINC01420 may play a critical role in NPC progression and may serve as a potential prognostic biomarker in NPC patients.
Project description:Background:The oncogenic role of excision repair cross-complementation group 6-like (ERCC6L) has been revealed in several cancers recently, but little is known about its expression and function in hepatocellular carcinoma (HCC). Methods:Utilizing public data from Human Protein Atlas (HPA) and The Cancer Genome Atlas (TCGA) databases, ERCC6L dysregulation in HCC and its clinical significance were determined by t-test and Chi-square test. Comprehensive survival analyses (such as nomogram, Cox regression model and Kaplan-Meier analysis) were performed to assess prognostic value of ERCC6L for HCC patients. Integrated bioinformatics analyses [including copy number alterations (CNA), DNA methylation, miRNA prediction and gene set enrichment analysis (GSEA)] were conducted to explore the mechanisms and biological roles underlying ERCC6L dysregulation in HCC. Results:ERCC6L upregulation was identified in HCC tissues compared to normal controls (P<0.05). In addition, overexpression of ERCC6L not only correlated with elevated alpha fetoprotein (AFP), vascular invasion (VI), and advanced histologic grade and TNM stage, but also had an independent prognostic value for the poorer overall survival (OS) and recurrence-free survival (RFS) of HCC patients (all P<0.05). Besides, nomogram integrating ERCC6L expression and TNM stage showed superior prognostic ability than that of TNM stage (P<0.05). Moreover, ERCC6L promoter hypomethylation and miR-5589 downregulation in HCC might result in ERCC6L overexpression (all P<0.05). Furthermore, eight biological pathways (including the DNA replication, cell cycle and p53 pathways) related to ERCC6L upregulation in HCC were found to be enriched by GSEA, and ERCC6L upregulation was positively correlated with PLK1 (polo-like kinase 1) expression and TP53 mutation in HCC, which preliminarily shed light on the roles of ERCC6L in HCC. Conclusions:ERCC6L may serve as a promising prognostic indicator and therapeutic target for HCC patients.
Project description:LIM and SH3 protein 1 (LASP1) enhances tumor growth and metastasis in various cancers, but its role in nasopharyngeal carcinoma (NPC) remains unclear. Herein, we investigated the role of LASP1 in NPC and explored the underlying mechanisms in NPC. Clinically, overexpression of LASP1 is associated with tumor metastasis and poor prognosis of NPC patients. Gain-of-function and loss-of-function assays showed that LASP1 promoted NPC cell proliferation, metastasis, and invasion in vitro and in vivo. Mechanistically, we observed clear co-localization between LASP1 and PTEN in NPC cells. LASP1 interacted with PTEN and decreased the expression of PTEN in NPC. The ubiquitination assay indicated that LASP1 overexpression increased PTEN ubiquitination. PTEN was known as a tumor suppressor by negatively regulating phosphoinositide 3-kinase/AKT signaling pathway. Rescue experiments showed that PTEN weakened LASP1-mediated cell proliferation, migration, and invasive abilities and decreased the phosphorylation of AKT in NPC cells. Our findings suggest that LASP1 has a crucial role in NPC progression via LASP1/PTEN/AKT axis, highlighting LASP1 as a therapeutic target for NPC.