Unknown

Dataset Information

0

Identification and Quantification of Modified Nucleosides in Saccharomyces cerevisiae mRNAs.


ABSTRACT: Post-transcriptional modifications to messenger RNAs (mRNAs) have the potential to alter the biological function of this important class of biomolecules. The study of mRNA modifications is a rapidly emerging field, and the full complement of chemical modifications in mRNAs is not yet established. We sought to identify and quantify the modifications present in yeast mRNAs using an ultra-high performance liquid chromatography tandem mass spectrometry method to detect 40 nucleoside variations in parallel. We observe six modified nucleosides with high confidence in highly purified mRNA samples (N7-methylguanosine, N6-methyladenosine, 2'-O-methylguanosine, 2'-O-methylcytidine, N4-acetylcytidine, and 5-formylcytidine) and identify the yeast protein responsible for N4-acetylcytidine incorporation in mRNAs (Rra1). In addition, we find that mRNA modification levels change in response to heat shock, glucose starvation, and/or oxidative stress. This work expands the repertoire of potential chemical modifications in mRNAs and highlights the value of integrating mass spectrometry tools in the mRNA modification discovery and characterization pipeline.

SUBMITTER: Tardu M 

PROVIDER: S-EPMC7254066 | biostudies-literature | 2019 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification and Quantification of Modified Nucleosides in <i>Saccharomyces cerevisiae</i> mRNAs.

Tardu Mehmet M   Jones Joshua D JD   Kennedy Robert T RT   Lin Qishan Q   Koutmou Kristin S KS  

ACS chemical biology 20190625 7


Post-transcriptional modifications to messenger RNAs (mRNAs) have the potential to alter the biological function of this important class of biomolecules. The study of mRNA modifications is a rapidly emerging field, and the full complement of chemical modifications in mRNAs is not yet established. We sought to identify and quantify the modifications present in yeast mRNAs using an ultra-high performance liquid chromatography tandem mass spectrometry method to detect 40 nucleoside variations in pa  ...[more]

Similar Datasets

2019-06-20 | GSE126405 | GEO
| PRJNA521783 | ENA
| S-EPMC5255579 | biostudies-literature
| S-EPMC2785255 | biostudies-literature
| S-EPMC1544141 | biostudies-literature
| S-EPMC1236574 | biostudies-literature
| S-EPMC2855503 | biostudies-literature
| S-EPMC1459670 | biostudies-other
| S-EPMC6698741 | biostudies-literature
| S-EPMC6014168 | biostudies-literature