Using Machine Learning to Predict Early Onset Acute Organ Failure in Critically Ill Intensive Care Unit Patients With Sickle Cell Disease: Retrospective Study.
Ontology highlight
ABSTRACT: BACKGROUND:Sickle cell disease (SCD) is a genetic disorder of the red blood cells, resulting in multiple acute and chronic complications, including pain episodes, stroke, and kidney disease. Patients with SCD develop chronic organ dysfunction, which may progress to organ failure during disease exacerbations. Early detection of acute physiological deterioration leading to organ failure is not always attainable. Machine learning techniques that allow for prediction of organ failure may enable early identification and treatment and potentially reduce mortality. OBJECTIVE:The aim of this study was to test the hypothesis that machine learning physiomarkers can predict the development of organ dysfunction in a sample of adult patients with SCD admitted to intensive care units (ICUs). METHODS:We applied diverse machine learning methods, statistical methods, and data visualization techniques to develop classification models to distinguish SCD from controls. RESULTS:We studied 63 sequential SCD patients admitted to ICUs with 163 patient encounters (mean age 30.7 years, SD 9.8 years). A subset of these patient encounters, 22.7% (37/163), met the sequential organ failure assessment criteria. The other 126 SCD patient encounters served as controls. A set of signal processing features (such as fast Fourier transform, energy, and continuous wavelet transform) derived from heart rate, blood pressure, and respiratory rate was identified to distinguish patients with SCD who developed acute physiological deterioration leading to organ failure from patients with SCD who did not meet the criteria. A multilayer perceptron model accurately predicted organ failure up to 6 hours before onset, with an average sensitivity and specificity of 96% and 98%, respectively. CONCLUSIONS:This retrospective study demonstrated the viability of using machine learning to predict acute organ failure among hospitalized adults with SCD. The discovery of salient physiomarkers through machine learning techniques has the potential to further accelerate the development and implementation of innovative care delivery protocols and strategies for medically vulnerable patients.
SUBMITTER: Mohammed A
PROVIDER: S-EPMC7254279 | biostudies-literature | 2020 May
REPOSITORIES: biostudies-literature
ACCESS DATA