Unknown

Dataset Information

0

The anti-microbial peptide LL-37/CRAMP levels are associated with acute heart failure and can attenuate cardiac dysfunction in multiple preclinical models of heart failure.


ABSTRACT: Rationale: Biomarkers for the diagnosis of heart failure (HF) are clinically essential. Circulating antimicrobial peptides LL-37 has emerged as a novel biomarker in cardiovascular disease, however, its relevance as a biomarker for acute HF are undetermined. Methods: Acute HF patients were enrolled in this study and the serum levels of LL-37/CRAMP (cathelicidin-related antimicrobial peptide) were measured by ELISA. The receiver-operator characteristic (ROC) curve was used to determine if serum LL-37 could be a biomarker for acute HF. Mouse CRAMP (mCRAMP, mouse homolog for human LL-37) was also determined in both heart and serum samples of, transverse aortic constriction (TAC)- and isoproterenol (ISO)-induced HF mice models, and phenylephrine (PE) and angiotensin II (AngII)-induced neonatal mouse cardiomyocytes (NMCMs) hypertrophic models, both intracellular and secreted, by ELISA. The protective effects of mCRAMP were determined in TAC, ISO, and AngII-induced HF in mice while whether HF was exacerbated in AngII-infused animals were checked in mCRAMP knockout mice. The underlying mechanism for protective effects of CARMP in pathological hypertrophy was determined by using a NF-?B agonist together with rCRAMP (rat homolog for human LL-37) in AngII or PE treated neonatal rat cardiomyocytes (NRCMs). Results: Serum levels of LL-37 were significantly decreased in acute HF patients (area under the curve (AUC) of 0.616), and negatively correlated with NT-proBNP. We further confirmed that mCRAMP was decreased in both heart and serum samples of TAC- and ISO-induced HF mice models. Moreover, in PE and AngII-induced NMCMs hypertrophic models, both intracellular and secreted mCRAMP levels were reduced. Functionally, mCRAMP could attenuate TAC, ISO, and AngII-induced HF in mice while CRAMP deficiency exacerbated HF. Mechanistically, the anti-hypertrophy effects of CRAMP were mediated by NF-?B signaling. Conclusions: Collectively, serum LL-37 is associated with acute HF and increasing CRAMP is protective against deleterious NF-?B signaling in the rodent.

SUBMITTER: Zhou Q 

PROVIDER: S-EPMC7255020 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

The anti-microbial peptide LL-37/CRAMP levels are associated with acute heart failure and can attenuate cardiac dysfunction in multiple preclinical models of heart failure.

Zhou Qiulian Q   Pan Li-Long LL   Xue Ruicong R   Ni Gehui G   Duan Yi Y   Bai Yuzheng Y   Shi Chao C   Ren Zhengnan Z   Wu Chengfei C   Li Guoping G   Agerberth Birgitta B   Sluijter Joost Pg JP   Sun Jia J   Xiao Junjie J  

Theranostics 20200515 14


<b>Rationale</b>: Biomarkers for the diagnosis of heart failure (HF) are clinically essential. Circulating antimicrobial peptides LL-37 has emerged as a novel biomarker in cardiovascular disease, however, its relevance as a biomarker for acute HF are undetermined. <b>Methods</b>: Acute HF patients were enrolled in this study and the serum levels of LL-37/CRAMP (cathelicidin-related antimicrobial peptide) were measured by ELISA. The receiver-operator characteristic (ROC) curve was used to determi  ...[more]

Similar Datasets

| S-EPMC6553709 | biostudies-literature
| S-EPMC2519444 | biostudies-literature
| S-EPMC6921147 | biostudies-literature
| S-EPMC8405154 | biostudies-literature
| S-EPMC3813730 | biostudies-literature
| S-EPMC5345758 | biostudies-literature
| S-EPMC7143398 | biostudies-literature
| S-EPMC5509375 | biostudies-literature
| S-EPMC7403366 | biostudies-literature
| S-EPMC6682359 | biostudies-literature