Project description:BackgroundAcute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is the leading cause of death among patients with IPF. However, there is no established treatment for this condition. Hence, we aimed to investigate the effectiveness and safety of recombinant human soluble thrombomodulin (rTM) for the treatment of AE-IPF.MethodsData were retrospectively collected from the Japanese Diagnosis Procedure Combination database from 1 January 2014 to 31 March 2018. We identified adult patients with IPF who received high-dose methylprednisolone (mPSL) therapy and mechanical ventilation upon admission. Eligible patients (n = 2814) were divided into those receiving high-dose mPSL alone (mPSL alone group, n = 2602) and rTM combined with high-dose mPSL (rTM group, n = 212). A stabilised inverse probability of treatment weighting (IPTW) using propensity scores was performed to compare outcomes between the two groups. The primary outcome was in-hospital mortality, and the secondary outcomes were 14- and 28-day mortality, bleeding events and length of hospital stay.ResultsThe in-hospital mortality rates of the mPSL alone and rTM groups were 75.9% and 76.9%, respectively. The results did not significantly differ between the two groups after performing a stabilised IPTW. The odds ratio of the rTM group compared to the mPSL alone group was 1.15 (95% confidence interval: 0.71-1.84; p = 0.57). Moreover, the secondary outcomes did not differ significantly between the two groups.ConclusionsIn patients with AE-IPF who developed severe respiratory failure, rTM in addition to high-dose mPSL was not associated with a better outcome.
Project description:BACKGROUND:The soluble receptor for advanced glycation end-products (sRAGE) has been suggested that it acts as a decoy for capturing advanced glycation end-products (AGEs) and inhibits the activation of the oxidative stress and apoptotic pathways. Lung AGEs/sRAGE is increased in idiopathic pulmonary fibrosis (IPF). The objective of the study was to evaluate the AGEs and sRAGE levels in serum as a potential biomarker in IPF. METHODS:Serum samples were collected from adult patients: 62 IPF, 22 chronic hypersensitivity pneumonitis (cHP), 20 fibrotic non-specific interstitial pneumonia (fNSIP); and 12 healthy controls. In addition, 23 IPF patients were re-evaluated after 3-year follow-up period. Epidemiological and clinical features were recorded: age, sex, smoking habits, and lung function. AGEs and sRAGE were evaluated by ELISA, and the results were correlated with pulmonary functional test values. RESULTS:IPF and cHP groups presented a significant increase of AGE/sRAGE serum concentration compared with fNSIP patients. Moreover, an inverse correlation between AGEs and sRAGE levels were found in IPF, and serum sRAGE at diagnosis correlated with FVC and DLCO values. Additionally, changes in serum AGEs and sRAGE correlated with % change of FVC, DLCO and TLC during the follow-up. sRAGE levels below 428.25 pg/ml evolved poor survival rates. CONCLUSIONS:These findings demonstrate that the increase of AGE/sRAGE ratio is higher in IPF, although the levels were close to cHP. AGE/sRAGE increase correlates with respiratory functional progression. Furthermore, the concentration of sRAGE in blood stream at diagnosis and follow-up could be considered as a potential prognostic biomarker.
Project description:Idiopathic pulmonary fibrosis (IPF) is a disease related to AT2 cell. We used flow cytometry to analyze the epithelial component of donor and IPF lungs. From the live cells, we first excluded the CD31PosCD45Pos and then selected the EPCAMPos cells for further analysis using the human AT2 cell marker HTll-280 and the surface marker PD-L1. Our data indicate that, the bona fide differentiated AT2 cells (HTll-280High PD-L1Neg), were drastically reduced in the context of IPF. More interestingly, the number of HTll-280Low/Neg PD-L1High was drastically increased, suggesting that HTll-280Low PD-L1High epithelial cells could represent a pool of progenitors linked to the deficient AT2 lineage. The aim of this experiment is further characterization of AT2 and PDL1+ cells in donor and IPF.
Project description:Over the past two and a half decades, many clinical trials have been designed to determine the safety and efficacy of pharmacotherapy for patients with idiopathic pulmonary fibrosis (IPF). However, so far, only two drugs (pirfenidone and nintedanib) have been found to have an impact on disease progression as defined by reducing the rate of decline in forced vital capacity over a year among IPF patients with mild to moderate impairment in lung function. These two drugs have been approved for treatment of IPF by regulatory agencies and are currently in clinical use worldwide. This article summarises the current landscape of pharmacotherapy for IPF and highlights the prospects and potential of new therapies that are currently being pursued in clinical trials.
Project description:Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive type of interstitial pneumonia with unknown causes, poor prognosis and no effective therapy available. Circular RNAs (circRNAs), which serve as potential therapeutic targets and diagnostic biomarkers for certain diseases, represent a recent hotspot in the field of RNA research. In the present study, a total of 67 significantly dysregulated circRNAs were identified in the plasma of IPF patients by using a circRNA microarray. Among these circRNAs, 38 were upregulated, whereas 29 were downregulated. Further validation of the results by polymerase chain reaction analysis indicated that Homo sapiens (hsa)_circRNA_100906, hsa_circRNA_102100 and hsa_circRNA_102348 were significantly upregulated, whereas hsa_circRNA_101225, hsa_circRNA_104780 and hsa_circRNA_101242 were downregulated in plasma samples of IPF patients compared with those in samples from healthy controls. The majority of differentially expressed circRNAs were generated from exonic regions. The host genes of the differentially expressed circRNAs were involved in the regulation of the cell cycle, adherens junctions and RNA transport. The competing endogenous RNA (ceRNA) network of the circRNAs/micro(mi)RNAs/mRNAs indicated that circRNA‑protected mRNA participated in transforming growth factor‑β1, hypoxia‑inducible factor‑1, Wnt, Janus kinase, Rho‑associated protein kinase, vascular endothelial growth factor, mitogen‑activated protein kinase, Hedgehog and nuclear factor κB signalling pathways or functioned as biomarkers for pulmonary fibrosis. Furthermore, luciferase reporter assays confirmed that hsa_circRNA_100906 and hsa_circRNA_102348 directly interact with miR‑324‑5p and miR‑630, respectively, which were downregulated in IPF patients. The present study provided a novel avenue for exploring the underlying molecular mechanisms of IPF disease.
Project description:Currently, there are no approved pharmacological treatments for the management of patients with idiopathic pulmonary fibrosis (IPF) in the USA or Europe. Pirfenidone is an orally bio-available small molecule that exhibits antifibrotic and anti-inflammatory properties in a variety of in vitro and animal models. Pirfenidone has been evaluated in four randomised, double-blind, placebo-controlled clinical trials conducted in Japan, North America and Europe. The totality of the data from these trials indicates that pirfenidone is able to reduce the rate of decline in lung function, measured as change in per cent predicted forced vital capacity (FVC) or vital capacity. There was also an effect on secondary end-points of progression free survival, categorical change in per cent predicted FVC, and the 6-min walk test. A recent meta-analysis of the three phase III studies in IPF demonstrated that pirfenidone significantly reduced the risk of disease progression by 30%. The efficacy of pirfenidone is associated with an acceptable tolerability and safety profile.