Unknown

Dataset Information

0

Mitochondrial complex I derived ROS regulate stress adaptation in Drosophila melanogaster.


ABSTRACT: Reactive Oxygen Species (ROS) are essential cellular messengers required for cellular homeostasis and regulate the lifespan of several animal species. The main site of ROS production is the mitochondrion, and within it, respiratory complex I (CI) is the main ROS generator. ROS produced by CI trigger several physiological responses that are essential for the survival of neurons, cardiomyocytes and macrophages. Here, we show that CI produces ROS when electrons flow in either the forward (Forward Electron Transport, FET) or reverse direction (Reverse Electron Transport, RET). We demonstrate that ROS production via RET (ROS-RET) is activated under thermal stress conditions and that interruption of ROS-RET production, through ectopic expression of the alternative oxidase AOX, attenuates the activation of pro-survival pathways in response to stress. Accordingly, we find that both suppressing ROS-RET signalling or decreasing levels of mitochondrial H2O2 by overexpressing mitochondrial catalase (mtCAT), reduces survival dramatically in flies under stress. Our results uncover a specific ROS signalling pathway where hydrogen peroxide (H2O2) generated by CI via RET is required to activate adaptive mechanisms, maximising survival under stress conditions.

SUBMITTER: Scialo F 

PROVIDER: S-EPMC7264463 | biostudies-literature | 2020 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mitochondrial complex I derived ROS regulate stress adaptation in Drosophila melanogaster.

Scialò Filippo F   Sriram Ashwin A   Stefanatos Rhoda R   Spriggs Ruth V RV   Loh Samantha H Y SHY   Martins L Miguel LM   Sanz Alberto A  

Redox biology 20200207


Reactive Oxygen Species (ROS) are essential cellular messengers required for cellular homeostasis and regulate the lifespan of several animal species. The main site of ROS production is the mitochondrion, and within it, respiratory complex I (CI) is the main ROS generator. ROS produced by CI trigger several physiological responses that are essential for the survival of neurons, cardiomyocytes and macrophages. Here, we show that CI produces ROS when electrons flow in either the forward (Forward E  ...[more]

Similar Datasets

| S-EPMC3190168 | biostudies-other
| S-EPMC2880708 | biostudies-literature
| S-EPMC5654931 | biostudies-literature
| S-EPMC9977279 | biostudies-literature
| S-EPMC9653094 | biostudies-literature
| S-EPMC8513802 | biostudies-literature
| S-EPMC10036122 | biostudies-literature
| S-EPMC3246748 | biostudies-literature
| S-EPMC6535812 | biostudies-literature
| S-EPMC3319048 | biostudies-literature