Unknown

Dataset Information

0

AccR, a TetR Family Transcriptional Repressor, Coordinates Short-Chain Acyl Coenzyme A Homeostasis in Streptomyces avermitilis.


ABSTRACT: Malonyl coenzyme A (malonyl-CoA) and methylmalonyl-CoA are the most common extender units for the biosynthesis of fatty acids and polyketides in Streptomyces, an industrially important producer of polyketides. Carboxylation of acetyl- and propionyl-CoAs is an essential source of malonyl- and methylmalonyl-CoAs; therefore, acyl-CoA carboxylases (ACCases) play key roles in primary and secondary metabolism. The regulation of the expression of ACCases in Streptomyces spp. has not been investigated previously. We characterized a TetR family transcriptional repressor, AccR, that mediates intracellular acetyl-, propionyl-, methylcrotonyl-, malonyl-, and methylmalonyl-CoA levels by controlling the transcription of genes that encode the main ACCase and enzymes associated with branched-chain amino acid metabolism in S. avermitilis AccR bound to a 16-nucleotide palindromic binding motif (GTTAA-N6-TTAAC) in promoter regions and repressed the transcription of the accD1A1-hmgL-fadE4 operon, echA8, echA9, and fadE2, which are involved in the production and assimilation of acetyl- and propionyl-CoAs. Methylcrotonyl-, propionyl-, and acetyl-CoAs acted as effectors to release AccR from its target DNA, resulting in enhanced transcription of target genes by derepression. The affinity of methylcrotonyl- and propionyl-CoAs to AccR was stronger than that of acetyl-CoA. Deletion of accR resulted in increased concentrations of short-chain acyl-CoAs (acetyl-, propionyl-, malonyl-, and methylmalonyl-CoAs), leading to enhanced avermectin production. Avermectin production was increased by 14.5% in an accR deletion mutant of the industrial high-yield strain S. avermitilis A8. Our findings clarify the regulatory mechanisms that maintain the homeostasis of short-chain acyl-CoAs in Streptomyces IMPORTANCE Acyl-CoA carboxylases play key roles in primary and secondary metabolism. However, the regulation of ACCase genes transcription in Streptomyces spp. remains unclear. Here, we demonstrated that AccR responded to intracellular acetyl-, propionyl-, and methylcrotonyl-CoA availability and mediated transcription of the genes related to production and assimilation of these compounds in S. avermitilis When intracellular concentrations of these compounds are low, AccR binds to target genes and represses their transcription, resulting in low production of malonyl- and methylmalonyl-CoAs. When intracellular acetyl-, propionyl-, and methylcrotonyl-CoA concentrations are high, these compounds bind to AccR to dissociate AccR from target DNA, promoting the conversion of these compounds to malonyl- and methylmalonyl-CoAs. This investigation revealed how AccR coordinates short-chain acyl-CoA homeostasis in Streptomyces.

SUBMITTER: Lyu M 

PROVIDER: S-EPMC7267193 | biostudies-literature | 2020 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

AccR, a TetR Family Transcriptional Repressor, Coordinates Short-Chain Acyl Coenzyme A Homeostasis in <i>Streptomyces avermitilis</i>.

Lyu Mengya M   Cheng Yaqing Y   Han Xiao X   Wen Ying Y   Song Yuan Y   Li Jilun J   Chen Zhi Z  

Applied and environmental microbiology 20200602 12


Malonyl coenzyme A (malonyl-CoA) and methylmalonyl-CoA are the most common extender units for the biosynthesis of fatty acids and polyketides in <i>Streptomyces</i>, an industrially important producer of polyketides. Carboxylation of acetyl- and propionyl-CoAs is an essential source of malonyl- and methylmalonyl-CoAs; therefore, acyl-CoA carboxylases (ACCases) play key roles in primary and secondary metabolism. The regulation of the expression of ACCases in <i>Streptomyces</i> spp. has not been  ...[more]

Similar Datasets

| S-EPMC3807474 | biostudies-literature
| S-EPMC3742746 | biostudies-literature
| S-EPMC4560284 | biostudies-literature
2021-08-10 | GSE181131 | GEO
| S-EPMC4051647 | biostudies-literature
| S-EPMC2940548 | biostudies-literature
| S-EPMC3911114 | biostudies-literature
| S-EPMC4495205 | biostudies-literature
| S-EPMC3165508 | biostudies-literature
| S-EPMC3911158 | biostudies-literature