Evaluation of liver tumour response by imaging.
Ontology highlight
ABSTRACT: The goal of assessing tumour response on imaging is to identify patients who are likely to benefit - or not - from anticancer treatment, especially in relation to survival. The World Health Organization was the first to develop assessment criteria. This early score, which assessed tumour burden by standardising lesion size measurements, laid the groundwork for many of the criteria that followed. This was then improved by the Response Evaluation Criteria in Solid Tumours (RECIST) which was quickly adopted by the oncology community. At the same time, many interventional oncology treatments were developed to target specific features of liver tumours that result in significant changes in tumours but have little effect on tumour size. New criteria focusing on the viable part of tumours were therefore designed to provide more appropriate feedback to guide patient management. Targeted therapy has resulted in a breakthrough that challenges conventional response criteria due to the non-linear relationship between response and tumour size, requiring the development of methods that emphasize the appearance of tumours. More recently, research into functional and quantitative imaging has created new opportunities in liver imaging. These results have suggested that certain parameters could serve as early predictors of response or could predict later tumour response at baseline. These approaches have now been extended by machine learning and deep learning. This clinical review focuses on the progress made in the evaluation of liver tumours on imaging, discussing the rationale for this approach, addressing challenges and controversies in the field, and suggesting possible future developments.
SUBMITTER: Gregory J
PROVIDER: S-EPMC7267412 | biostudies-literature | 2020 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA