Project description:The pandemic COVID-19 has spread widely throughout the globe and has been responsible for millions of deaths worldwide. Recently, it has been identified that there is no specific and 100% effective treatment available to manage the infection especially for the severe cases. A significant amount of research efforts and clinical trials have been undertaken globally and many more are underway to find the potential treatment option. Earlier, convalescent plasma or hyperimmune immunoglobulin was effectively used in the treatment of many endemic or epidemic viral infections as a part of passive immunization. In this article, we have touched upon the immunopathology of COVID-19 infection, a basic understanding of convalescent plasma, it's manufacturing as well as evaluation, and have reviewed the scientific developments focussing on the potential of convalescent plasma vis-à-vis other modalities for the management of COVID-19. The article also covers various research approaches, clinical trials conducted globally, and the clinical trials which are at various stages for exploring the efficacy and safety of the convalescent plasma therapy (CPT) to predict its future perspective to manage COVID-19.
Project description:Background: This study assesses the feasibility of producing hyperimmune anti-COVID-19 intravenously administrable immunoglobulin (C-IVIG) from pooled convalescent plasma (PCP) to provide a safe and effective passive immunization treatment option for COVID-19. Materials & methods: PCP was fractionated by modified caprylic acid precipitation followed by ultrafiltration/diafiltration to produce hyperimmune C-IVIG. Results: In C-IVIG, the mean SARS-CoV-2 antibody level was found to be threefold (104 ± 30 cut-off index) that of the PCP (36 ± 8.5 cut-off index) and mean protein concentration was found to be 46 ± 3.7 g/l, comprised of 89.5% immunoglobulins. Conclusion: The current method of producing C-IVIG is feasible as it uses locally available PCP and simpler technology and yields a high titer of SARS-CoV-2 antibody. The safety and efficacy of C-IVIG will be evaluated in a registered clinical trial (NCT04521309).
Project description:Information on treatment of COVID-19 infection in renal transplant recipients is scarce, especially in symptomatic patients and patients with recent major clinical events. This group of patients suffers from different opportunistic infections which may coexist with COVID-19. Currently available expert opinions suggest reduction of immunosuppression therapy for renal transplant recipients with symptomatic COVID-19 infection with either antiviral drugs, hydroxychloroquine and/or azithromycin. Inspired by our experience in treatment of CMV pneumonia and literature data on the potential benefit of convalescent plasma for treatment of different viral diseases we suggest use of the hyperimmune anti-CMV gamma globulins in addition to other available therapies. Besides the immunosuppression reduction which is supposed to be beneficial, immunoglobulins with their immunomodulatory effects and possible antiviral role, may increase a possibility for favorable outcome.
Project description:Background: The authors describe the developmental process of intravenous anti-COVID-19 hyperimmune immunoglobulin from anti-SARS-CoV-2 neutralizing antibody-containing plasma. Furthermore, the authors investigated its safety and protective activity in animal models. Materials & methods: The manufacturing process included standard ethanol fractionation, chromatographic purification steps and virus removal or inactivation. Results: The authors produced pure and safe immunoglobulin for intravenous administration, with 98.1 ± 6.5 mg/ml protein content, of which 97.6 ± 0.7% was IgG. The concentration factor of SARS-CoV-2 neutralizing antibodies was 9.4 ± 1.4-times. Safety studies in animals showed no signs of acute/chronic toxicity or allergenic or thrombogenic properties. Intravenous anti-COVID-19 hyperimmune immunoglobulin protected immunosuppressed hamsters against SARS-Cov-2. Conclusion: The obtained results can allow the start of clinical trials to study the safety and efficacy in healthy adults.
Project description:BackgroundAdministration of convalescent plasma, serum, or hyperimmune immunoglobulin may be of clinical benefit for treatment of severe acute respiratory infections (SARIs) of viral etiology. We conducted a systematic review and exploratory meta-analysis to assess the overall evidence.MethodsHealthcare databases and sources of grey literature were searched in July 2013. All records were screened against the protocol eligibility criteria, using a 3-stage process. Data extraction and risk of bias assessments were undertaken.ResultsWe identified 32 studies of SARS coronavirus infection and severe influenza. Narrative analyses revealed consistent evidence for a reduction in mortality, especially when convalescent plasma is administered early after symptom onset. Exploratory post hoc meta-analysis showed a statistically significant reduction in the pooled odds of mortality following treatment, compared with placebo or no therapy (odds ratio, 0.25; 95% confidence interval, .14-.45; I(2) = 0%). Studies were commonly of low or very low quality, lacked control groups, and at moderate or high risk of bias. Sources of clinical and methodological heterogeneity were identified.ConclusionsConvalescent plasma may reduce mortality and appears safe. This therapy should be studied within the context of a well-designed clinical trial or other formal evaluation, including for treatment of Middle East respiratory syndrome coronavirus CoV infection.
Project description:In the absence of an effective vaccine or monoclonal therapeutic, transfer of convalescent plasma (CCP) was proposed early in the SARS-CoV-2 pandemic as an easily accessible therapy. However, despite the global excitement around this historically valuable therapeutic approach, results from CCP trials have been mixed and highly debated. Unlike other therapeutic interventions, CCP represents a heterogeneous drug. Each CCP unit is unique and collected from an individual recovered COVID-19 patient, making the interpretation of therapeutic benefit more complicated. While the prevailing view in the field would suggest that it is administration of neutralizing antibodies via CCP that centrally provides therapeutic benefit to newly infected COVID-19 patients, many hospitalized COVID-19 patients already possess neutralizing antibodies. Importantly, the therapeutic benefit of antibodies can extend far beyond their simple ability to bind and block infection, especially related to their ability to interact with the innate immune system. In our work we deeply profiled the SARS-CoV-2-specific Fc-response in CCP donors, along with the recipients prior to and after CCP transfer, revealing striking SARS-CoV-2 specific Fc-heterogeneity across CCP units and their recipients. However, CCP units possessed more functional antibodies than acute COVID-19 patients, that shaped the evolution of COVID-19 patient humoral profiles via distinct immunomodulatory effects that varied by pre-existing SARS-CoV-2 Spike (S)-specific IgG titers in the patients. Our analysis identified surprising influence of both S and Nucleocapsid (N) specific antibody functions not only in direct antiviral activity but also in anti-inflammatory effects. These findings offer insights for more comprehensive interpretation of correlates of immunity in ongoing large scale CCP trials and for the design of next generation therapeutic design.
Project description:IntroductionThe coronavirus disease 2019 (COVID-19) pandemic has spread globally. Therapeutic options including antivirals, anti-inflammatory compounds, and vaccines are still under study. Convalescent plasma(CP) immunotherapy was an effective method for fighting against similar viral infections such as SARS-CoV, and MERS-CoV. In the epidemic of COVID-19, a large number of literatures reported the application of CP. However, there is controversy over the efficacy of CP therapy for COVID-19. This systematic review was designed to evaluate the existing evidence and experience related to CP immunotherapy for COVID-19.MethodsA literature search was conducted on Pubmed, Cochrane Library, Clinical Key, Wanfang Database; China National Knowledge Infrastructure(CNKI) were used to search for the proper keywords such as SARS-CoV-2, COVID-19, plasma, serum, immunoglobulins, blood transfusion, convalescent, novel coronavirus, immune and the related words for publications published until 15.10.2020. Other available resources were also used to identify relevant articles. The present systematic review was performed based on PRISMA protocol. Data extraction and risk of bias assessments were performed by two reviewers.ResultsBased on the inclusions and exclusions criteria, 45 articles were included in the final review. First, meta-analysis results of RCTs showed that, there were no statistically significant differences between CP transfusion and the control group in terms of reducing mortality(OR 0.79, 95% CI 0.52-1.19, I2 = 28%) and improving clinical symptoms(OR 1.21, 95%CI 0.68-2.16; I2 = 0%). The results of controlled NRSIs showed that CP therapy may reduce mortality in COVID-19 patients(RR 0.59, 95% CI 0.53-0.66, I2 = 0%). Second, limited safety data suggested that CP is a well-tolerated therapy with a low incidence of adverse events. But, due to lack of safety data for the control group, it is really not easy to determine whether CP transfusion has an impact on moderate to serious AEs. Thirdly, for children, pregnant, elderly, tumor and immunocompromised patients, CP may be a well-tolerated therapy, if the disease cannot be controlled and continues to progress. Studies were commonly of low or very low quality.ConclusionsAlthough the results of limited RCTs showed that CP cannot significantly reduce mortality, some non-RCTs and case report(series) have found that CP may help patients improve clinical symptoms, clear the virus, and reduce mortality, especially for patients with COVID-19 within ten days of illness. We speculate that CP may be a possible treatment option. High-quality studies are needed for establishing stronger quality of evidence and pharmacists should also be actively involved in the CP treatment process and provide close pharmaceutical care.