Ontology highlight
ABSTRACT: Background
Red blood cell (RBC) polymorphisms are suggested to influence the course of Plasmodium falciparum malaria. Whereas some variants have been found to be protective, others have been found to enhance parasite development. This study evaluated the effect of variant haemoglobin (Hb) and ABO blood groups on P. falciparum merozoite invasion, multiplication rates as well as gametocyte development.Methods
Approximately 2.5 mL of venous blood was collected from each participant. Flow cytometry was used to determine the in vitro merozoite invasion rates of NF54 parasites into the blood of 66 non-parasitaemic individuals with variant Hb genotypes (HbSS, HbSC) and blood groups (A, B, O), which were then compared with invasion into HbAA blood. The ex vivo asexual parasite multiplication and gametocyte production rates of parasites from 79 uncomplicated malaria patients with varying Hb genotypes (HbAS, HbAC and HbAA) were also estimated using microscopy.Results
Merozoite invasion rates were significantly reduced by about 50% in RBCs containing HbSS and HbSC relative to HbAA cells. The presence of blood group O and B reduced the invasion rates of HbSS by about 50% and 60%, respectively, relative to HbSC but the presence of blood group A removed the inhibitory effect of HbSS. The initial parasite densities in uncomplicated malaria patients with Hb genotypes HbAS and HbAC cells were similar but significantly lower than those with genotype HbAA. The ex vivo parasite multiplication rate, gametocytaemia and gametocyte conversion rates followed a similar trend but did not reach statistical significance (p?>?0.05).Conclusions
Parasite invasion rate into erythrocytes is dependent on both erythrocyte blood group antigen and haemoglobin genotype as blood group O and B provided protection via reduced merozoite invasion in RBCs containing HbSS relative to HbSC. Regardless of haemoglobin type, greater than 70% malaria patients had circulating ring stage parasites that differentiated into stage II gametocytes in 4 days.
SUBMITTER: Amoah LE
PROVIDER: S-EPMC7275330 | biostudies-literature | 2020 Jun
REPOSITORIES: biostudies-literature
Malaria journal 20200605 1
<h4>Background</h4>Red blood cell (RBC) polymorphisms are suggested to influence the course of Plasmodium falciparum malaria. Whereas some variants have been found to be protective, others have been found to enhance parasite development. This study evaluated the effect of variant haemoglobin (Hb) and ABO blood groups on P. falciparum merozoite invasion, multiplication rates as well as gametocyte development.<h4>Methods</h4>Approximately 2.5 mL of venous blood was collected from each participant. ...[more]