Unknown

Dataset Information

0

Targeted Delivery of Iron Oxide Nanoparticle-Loaded Human Embryonic Stem Cell-Derived Spherical Neural Masses for Treating Intracerebral Hemorrhage.


ABSTRACT: This study evaluated the potential of iron oxide nanoparticle-loaded human embryonic stem cell (ESC)-derived spherical neural masses (SNMs) to improve the transportation of stem cells to the brain, ameliorate brain damage from intracerebral hemorrhage (ICH), and recover the functional status after ICH under an external magnetic field of a magnet attached to a helmet. At 24 h after induction of ICH, rats were randomly separated into three experimental groups: ICH with injection of phosphate-buffered saline (PBS group), ICH with intravenous injection of magnetosome-like ferrimagnetic iron oxide nanocubes (FION)-labeled SNMs (SNMs* group), and ICH with intravenous injection of FION-labeled SNMs followed by three days of external magnetic field exposure for targeted delivery by a magnet-embedded helmet (SNMs*+Helmet group). On day 3 after ICH induction, an increased Prussian blue-stained area and decreased swelling volume were observed in the SNMs*+Helmet group compared with that of the other groups. A significantly decreased recruitment of macrophages and neutrophils and a downregulation of pro-inflammatory cytokines followed by improved neurological function three days after ICH were observed in the SNMs*+Helmet group. Hemispheric atrophy at six weeks after ICH was significantly decreased in the SNMs*+Helmet group compared with that of the PBS group. In conclusion, we have developed a targeted delivery system using FION tagged to stem cells and a magnet-embedded helmet. The targeted delivery of SNMs might have the potential for developing novel therapeutic strategies for ICH.

SUBMITTER: Kang MK 

PROVIDER: S-EPMC7279437 | biostudies-literature | 2020 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Targeted Delivery of Iron Oxide Nanoparticle-Loaded Human Embryonic Stem Cell-Derived Spherical Neural Masses for Treating Intracerebral Hemorrhage.

Kang Min Kyoung MK   Kim Tae Jung TJ   Kim Young-Ju YJ   Kang Lamie L   Kim Jonghoon J   Lee Nohyun N   Hyeon Taeghwan T   Lim Mi-Sun MS   Mo Hee Jung HJ   Shin Jung Hwan JH   Ko Sang-Bae SB   Yoon Byung-Woo BW  

International journal of molecular sciences 20200522 10


This study evaluated the potential of iron oxide nanoparticle-loaded human embryonic stem cell (ESC)-derived spherical neural masses (SNMs) to improve the transportation of stem cells to the brain, ameliorate brain damage from intracerebral hemorrhage (ICH), and recover the functional status after ICH under an external magnetic field of a magnet attached to a helmet. At 24 h after induction of ICH, rats were randomly separated into three experimental groups: ICH with injection of phosphate-buffe  ...[more]

Similar Datasets

| S-EPMC3552518 | biostudies-literature
| S-EPMC5730226 | biostudies-literature
2024-02-29 | GSE255030 | GEO
2023-07-01 | GSE220886 | GEO
2024-06-11 | GSE264394 | GEO
| S-EPMC2874426 | biostudies-literature
| S-EPMC7153627 | biostudies-literature
| S-EPMC4443491 | biostudies-literature
| 92811 | ecrin-mdr-crc
| S-EPMC4594095 | biostudies-literature