Unknown

Dataset Information

0

Cross-Omics: Integrating Genomics with Metabolomics in Clinical Diagnostics.


ABSTRACT: Next-generation sequencing and next-generation metabolic screening are, independently, increasingly applied in clinical diagnostics of inborn errors of metabolism (IEM). Integrated into a single bioinformatic method, these two -omics technologies can potentially further improve the diagnostic yield for IEM. Here, we present cross-omics: a method that uses untargeted metabolomics results of patient's dried blood spots (DBSs), indicated by Z-scores and mapped onto human metabolic pathways, to prioritize potentially affected genes. We demonstrate the optimization of three parameters: (1) maximum distance to the primary reaction of the affected protein, (2) an extension stringency threshold reflecting in how many reactions a metabolite can participate, to be able to extend the metabolite set associated with a certain gene, and (3) a biochemical stringency threshold reflecting paired Z-score thresholds for untargeted metabolomics results. Patients with known IEMs were included. We performed untargeted metabolomics on 168 DBSs of 97 patients with 46 different disease-causing genes, and we simulated their whole-exome sequencing results in silico. We showed that for accurate prioritization of disease-causing genes in IEM, it is essential to take into account not only the primary reaction of the affected protein but a larger network of potentially affected metabolites, multiple steps away from the primary reaction.

SUBMITTER: Kerkhofs MHPM 

PROVIDER: S-EPMC7281020 | biostudies-literature | 2020 May

REPOSITORIES: biostudies-literature

altmetric image

Publications


Next-generation sequencing and next-generation metabolic screening are, independently, increasingly applied in clinical diagnostics of inborn errors of metabolism (IEM). Integrated into a single bioinformatic method, these two -omics technologies can potentially further improve the diagnostic yield for IEM. Here, we present cross-omics: a method that uses untargeted metabolomics results of patient's dried blood spots (DBSs), indicated by Z-scores and mapped onto human metabolic pathways, to prio  ...[more]

Similar Datasets

| S-EPMC7108983 | biostudies-literature
| S-EPMC8163882 | biostudies-literature
2015-10-30 | E-GEOD-73339 | biostudies-arrayexpress
2015-10-30 | E-GEOD-73367 | biostudies-arrayexpress
2015-10-30 | E-GEOD-73514 | biostudies-arrayexpress
2015-10-30 | GSE73339 | GEO
2015-10-30 | GSE73367 | GEO
| S-EPMC6182835 | biostudies-other
2015-10-30 | GSE73514 | GEO
| S-EPMC5717223 | biostudies-literature