Unknown

Dataset Information

0

Effects of Magnesium Oxide (MgO) Shapes on In Vitro and In Vivo Degradation Behaviors of PLA/MgO Composites in Long Term.


ABSTRACT: Biodegradable devices for medical applications should be with an appropriate degradation rate for satisfying the various requirements of bone healing. In this study, composite materials of polylactic acid (PLA)/stearic acid-modified magnesium oxide (MgO) with a 1 wt% were prepared through blending extrusion, and the effects of the MgO shapes on the composites' properties in in vitro and in vivo degradation were investigated. The results showed that the long-term degradation behaviors of the composite samples depended significantly on the filler shape. The degradation of the composites is accelerated by the increase in the water uptake rate of the PLA matrix and the composite containing the MgO nanoparticles was influenced more severely by the enhanced hydrophilicity. Furthermore, the pH value of the phosphate buffer solution (PBS) was obviously regulated by the dissolution of MgO through the neutralization of the acidic product of the PLA degradation. In addition, the improvement of the in vivo degrading process of the composite illustrated that the PLA/MgO materials can effectively regulate the degradation of the PLA matrix as well as raise its bioactivity, indicating the composites for utilization as a biomedical material matching the different requirements for bone-related repair.

SUBMITTER: Zhao Y 

PROVIDER: S-EPMC7284841 | biostudies-literature | 2020 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Effects of Magnesium Oxide (MgO) Shapes on In Vitro and In Vivo Degradation Behaviors of PLA/MgO Composites in Long Term.

Zhao Yun Y   Liang Hui H   Zhang Shiqiang S   Qu Shengwei S   Jiang Yue Y   Chen Minfang M  

Polymers 20200508 5


Biodegradable devices for medical applications should be with an appropriate degradation rate for satisfying the various requirements of bone healing. In this study, composite materials of polylactic acid (PLA)/stearic acid-modified magnesium oxide (MgO) with a 1 wt% were prepared through blending extrusion, and the effects of the MgO shapes on the composites' properties in in vitro and in vivo degradation were investigated. The results showed that the long-term degradation behaviors of the comp  ...[more]

Similar Datasets

| S-EPMC6680788 | biostudies-literature
| S-EPMC8271688 | biostudies-literature
| S-EPMC8199591 | biostudies-literature
| S-EPMC9080701 | biostudies-literature
| S-EPMC10488912 | biostudies-literature
| S-EPMC10386388 | biostudies-literature
| S-EPMC5543133 | biostudies-other
| S-EPMC7918987 | biostudies-literature
| S-EPMC8150313 | biostudies-literature
| PRJNA979101 | ENA