Oral vaccination with live attenuated Yersinia pseudotuberculosis strains delivering a FliC180-LcrV fusion antigen confers protection against pulmonary Y. Pestis infection.
Ontology highlight
ABSTRACT: We incorporated the ΔPfur::TT araC PBADfur deletion-insertion mutation on top of a previous Yersinia pseudotuberculosis mutant (Δasd ΔyopJ ΔyopK) to construct a new mutant designated as Yptb5, which manifests the arabinose-dependent regulated delayed fur (encoding ferric uptake regulator) shut-off. The Yptb5 strain was used to deliver an adjuvanted fusion protein, FliC180-LcrV. Levels of FliC180-LcrV synthesis were same in Yptb5 either harboring pSMV4, a p15A ori plasmid or pSMV8, a pSC101 ori plasmid containing the fliC180-lcrV fusion gene driven by Ptrc promoter. Tissue burdens of both Yptb5(pSMV4) and Yptb5(pSMV8) in mice had similar patterns. Mice vaccinated orally with 5 × 108 CFU of either Yptb5(pSMV4) or Yptb5(pSMV8) strain were primed high antibody titers with a balanced Th1/Th2 response, also developed potent T-cell responses with significant productions of IFN-γ, IL-17A and TNF-α. Immunization with each mutant strain conferred complete protection against pulmonary challenge with 5.5 × 103 CFU (55 LD50) of Y. pestis, but partial protection (50% survival) against 100 LD50 of Y. pestis. Our results demonstrate that arabinose-dependent regulated delayed fur shut-off is an effective strategy to develop live attenuated bacterial vaccines while retaining strong immunogenicity.
SUBMITTER: Singh AK
PROVIDER: S-EPMC7285849 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA