Unknown

Dataset Information

0

Injectable Cucurbit[8]uril-Based Supramolecular Gelatin Hydrogels for Cell Encapsulation.


ABSTRACT: Recent efforts to develop hydrogel biomaterials have focused on better recapitulating the dynamic properties of the native extracellular matrix. In hydrogel biomaterials, binding thermodynamics and cross-link kinetics directly affect numerous bulk dynamic properties such as strength, stress relaxation, and material clearance. However, despite the broad range of bulk dynamic properties observed in biological tissues, present strategies to incorporate dynamic linkages in cell-encapsulating hydrogels rely on a relatively small number of dynamic covalent chemical reactions and host-guest interactions. To expand this toolkit, we report the preparation of supramolecular gelatin hydrogels with cucurbit[8]uril (CB[8])-based cross-links that form on demand via thiol-ene reactions between preassembled CB[8]·FGGC peptide ternary complexes and grafted norbornenes. Human fibroblast cells encapsulated within these optically transparent, shear thinning, injectable hydrogels remained highly viable and exhibited a well-spread morphology in culture. These CB[8]-based gelatin hydrogels are anticipated to be useful in applications ranging from bioprinting to cell and drug delivery.

SUBMITTER: Madl AC 

PROVIDER: S-EPMC7286610 | biostudies-literature | 2020 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Injectable Cucurbit[8]uril-Based Supramolecular Gelatin Hydrogels for Cell Encapsulation.

Madl Amy C AC   Madl Christopher M CM   Myung David D  

ACS macro letters 20200408 4


Recent efforts to develop hydrogel biomaterials have focused on better recapitulating the dynamic properties of the native extracellular matrix. In hydrogel biomaterials, binding thermodynamics and cross-link kinetics directly affect numerous bulk dynamic properties such as strength, stress relaxation, and material clearance. However, despite the broad range of bulk dynamic properties observed in biological tissues, present strategies to incorporate dynamic linkages in cell-encapsulating hydroge  ...[more]

Similar Datasets

| S-EPMC7645158 | biostudies-literature
| S-EPMC8153742 | biostudies-literature
| S-EPMC3535207 | biostudies-literature
| S-EPMC4742902 | biostudies-literature
| S-EPMC6644559 | biostudies-literature
| S-EPMC4849477 | biostudies-literature
| S-EPMC10843849 | biostudies-literature
| S-EPMC6437033 | biostudies-literature
| S-EPMC6051393 | biostudies-literature
| S-EPMC7464550 | biostudies-literature