Efficient As(III) Removal by Novel MoS2-Impregnated Fe-Oxide-Biochar Composites: Characterization and Mechanisms.
Ontology highlight
ABSTRACT: Sorbents that efficiently eliminate toxic metal(loid)s from industrial wastes are required for the protection of the environment and human health. Therefore, we demonstrated efficient As(III) removal by novel, eco-friendly, hydrothermally prepared MoS2-impregnated FeO x @BC800 (MSF@BC800). The properties and adsorption mechanism of the material were investigated by X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller analysis, X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The synergistic effects of FeO x and MoS2 on MSF@BC800 considerably enhanced As(III)-removal efficiency to ?99.73% and facilitated superior As(III) affinity in aqueous solutions (K d ? 105 mL g-1) compared to those of FeO x @BC800 and MS@BC800, which showed 37.07 and 17.86% As(III)-removal efficiencies and K d = 589 and 217 mL g-1, respectively, for an initial As(III) concentration of ?10 mg L-1. The maximum Langmuir As(III) sorption capacity of MSF@BC800 was 28.4 mg g-1. Oxidation of As(III) to As(V) occurred on the MSF@BC800 composite surfaces. Adsorption results agreed with those obtained from the Freundlich and pseudo-second-order models, suggesting multilayer coverage and chemisorption, respectively. Additionally, MSF@BC800 characteristics were examined under different reaction conditions, with temperature, pH, ionic strength, and humic acid concentration being varied. The results indicated that MSF@BC800 has considerable potential as an eco-friendly environmental remediation and As(III)-decontamination material.
SUBMITTER: Khan ZH
PROVIDER: S-EPMC7288705 | biostudies-literature | 2020 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA