Complex Analysis of Retroposed Genes' Contribution to Human Genome, Proteome and Transcriptome.
Ontology highlight
ABSTRACT: Gene duplication is a major driver of organismal evolution. One of the main mechanisms of gene duplications is retroposition, a process in which mRNA is first transcribed into DNA and then reintegrated into the genome. Most gene retrocopies are depleted of the regulatory regions. Nevertheless, examples of functional retrogenes are rapidly increasing. These functions come from the gain of new spatio-temporal expression patterns, imposed by the content of the genomic sequence surrounding inserted cDNA and/or by selectively advantageous mutations, which may lead to the switch from protein coding to regulatory RNA. As recent studies have shown, these genes may lead to new protein domain formation through fusion with other genes, new regulatory RNAs or other regulatory elements. We utilized existing data from high-throughput technologies to create a complex description of retrogenes functionality. Our analysis led to the identification of human retroposed genes that substantially contributed to transcriptome and proteome. These retrocopies demonstrated the potential to encode proteins or short peptides, act as cis- and trans- Natural Antisense Transcripts (NATs), regulate their progenitors' expression by competing for the same microRNAs, and provide a sequence to lncRNA and novel exons to existing protein-coding genes. Our study also revealed that retrocopies, similarly to retrotransposons, may act as recombination hot spots. To our best knowledge this is the first complex analysis of these functions of retrocopies.
SUBMITTER: Kubiak MR
PROVIDER: S-EPMC7290577 | biostudies-literature | 2020 May
REPOSITORIES: biostudies-literature
ACCESS DATA