Role of Endoplasmic Reticulum Stress Sensor IRE1? in Cellular Physiology, Calcium, ROS Signaling, and Metaflammation.
Ontology highlight
ABSTRACT: Inositol-requiring transmembrane kinase endoribonuclease-1? (IRE1?) is the most prominent and evolutionarily conserved unfolded protein response (UPR) signal transducer during endoplasmic reticulum functional upset (ER stress). A IRE1? signal pathway arbitrates yin and yang of cellular fate in objectionable conditions. It plays several roles in fundamental cellular physiology as well as in several pathological conditions such as diabetes, obesity, inflammation, cancer, neurodegeneration, and in many other diseases. Thus, further understanding of its molecular structure and mechanism of action during different cell insults helps in designing and developing better therapeutic strategies for the above-mentioned chronic diseases. In this review, recent insights into structure and mechanism of activation of IRE1? along with its complex regulating network were discussed in relation to their basic cellular physiological function. Addressing different binding partners that can modulate IRE1? function, UPRosome triggers different downstream pathways depending on the cellular backdrop. Furthermore, IRE1? are in normal cell activities outside the dominion of ER stress and activities under the weather of inflammation, diabetes, and obesity-related metaflammation. Thus, IRE1 as an ER stress sensor needs to be understood from a wider perspective for comprehensive functional meaning, which facilitates us with assembling future needs and therapeutic benefits.
SUBMITTER: Riaz TA
PROVIDER: S-EPMC7290600 | biostudies-literature | 2020 May
REPOSITORIES: biostudies-literature
ACCESS DATA