Heterobilayers of 2D materials as a platform for excitonic superfluidity.
Ontology highlight
ABSTRACT: Excitonic condensate has been long-sought within bulk indirect-gap semiconductors, quantum wells, and 2D material layers, all tried as carrying media. Here, we propose intrinsically stable 2D semiconductor heterostructures with doubly-indirect overlapping bands as optimal platforms for excitonic condensation. After screening hundreds of 2D materials, we identify candidates where spontaneous excitonic condensation mediated by purely electronic interaction should occur, and hetero-pairs Sb2Te2Se/BiTeCl, Hf2N2I2/Zr2N2Cl2, and LiAlTe2/BiTeI emerge promising. Unlike monolayers, where excitonic condensation is hampered by Peierls instability, or other bilayers, where doping by applied voltage is required, rendering them essentially non-equilibrium systems, the chemically-specific heterostructures predicted here are lattice-matched, show no detrimental electronic instability, and display broken type-III gap, thus offering optimal carrier density without any gate voltages, in true-equilibrium. Predicted materials can be used to access different parts of electron-hole phase diagram, including BEC-BCS crossover, enabling tantalizing applications in superfluid transport, Josephson-like tunneling, and dissipationless charge counterflow.
SUBMITTER: Gupta S
PROVIDER: S-EPMC7293212 | biostudies-literature | 2020 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA