Project description:Rett syndrome (RTT), a severe postnatal neurodevelopmental disorder, is caused by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). MeCP2 is a chromatin organizer regulating gene expression. RTT-causing mutations have been shown to affect this function. However, the mechanism by which MeCP2 organizes chromatin is unclear. In this study, we found that MeCP2 can induce compaction and liquid-liquid phase separation of nucleosomal arrays in vitro, and DNA methylation further enhances formation of chromatin condensates by MeCP2. Interestingly, RTT-causing mutations compromise MeCP2-mediated chromatin phase separation, while benign variants have little effect on this process. Moreover, MeCP2 competes with linker histone H1 to form mutually exclusive chromatin condensates in vitro and distinct heterochromatin foci in vivo. RTT-causing mutations reduce or even abolish the ability of MeCP2 to compete with histone H1 and to form chromatin condensates. Together, our results identify a novel mechanism by which phase separation underlies MeCP2-mediated heterochromatin formation and reveal the potential link between this process and the pathology of RTT.
Project description:X-ray structure of methyl-CpG binding domain (MBD) of MeCP2, an intrinsically disordered protein (IDP) involved in Rett syndrome, offers a rational basis for defining the spatial distribution for most of the sites where mutations responsible of Rett syndrome, RTT, occur. We have ascribed pathogenicity for mutations of amino acids bearing positively charged side chains, all located at the protein-DNA interface, as positive charge removal cause reduction of the MeCP2-DNA adduct lifetime. Pathogenicity of the frequent proline replacements, outside the DNA contact moiety of MBD, can be attributed to the role of this amino acid for maintaining both unfolded states for unbound MeCP2 and, at the same time, to favor some higher conformational order for stabilizing structural determinants required by protein activity. These hypotheses can be extended to transcription repressor domain, TRD, the other MeCP2-DNA interaction site and, in general, to all the IDP that interact with nucleic acids.
Project description:Mutations in Methyl-CpG-Binding protein 2 (MECP2) are commonly associated with the neurodevelopmental disorder Rett syndrome (RTT). However, some people with RTT do not have mutations in MECP2, and interestingly there have been people identified with MECP2 mutations that do not have the clinical features of RTT. In this report we present four people with neurodevelopmental abnormalities and clear RTT-disease causing MECP2 mutation but lacking the characteristic clinical features of RTT. One patient's symptoms suggest an extension of the known spectrum of MECP2 associated phenotypes to include global developmental delay with obsessive compulsive disorder and attention deficit hyperactivity disorder. These results reemphasize that RTT should remain a clinical diagnosis, based on the recent consensus criteria.
Project description:Rett syndrome causing missense mutations in the methyl-CpG-binding domain (MBD) of methyl CpG-binding protein 2 (MeCP2) were investigated both in silico and in vitro to reveal their effect on protein stability. It is demonstrated that the vast majority of frequently occurring mutations in the human population indeed alter the MBD folding free energy by a fraction of a kcal/mol up to more than 1 kcal/mol. While the absolute magnitude of the change of the free energy is small, the effect on the MBD functionality may be substantial since the folding free energy of MBD is about 2 kcal/mol only. Thus, it is emphasized that the effect of mutations on protein integrity should be evaluated with respect to the wild-type folding free energy but not with the absolute value of the folding free energy change. Furthermore, it was observed that the magnitude of the effect is correlated neither with the burial of the mutation sites nor with the basic amino acid physicochemical property change. Mutations that strongly perturb the immediate structural features were found to have little effect on folding free energy, while very conservative mutations resulted in large changes of the MBD stability. This observation was attributed to the protein's ability to structurally relax and reorganize to reduce the effect of mutation. Comparison between in silico and in vitro results indicated that some Web servers perform relatively well, while the free energy perturbation approach frequently overpredicts the magnitude of the free energy change especially when a charged amino acid is involved.
Project description:BACKGROUND:Rett syndrome (RTT) is a severe neurodevelopmental disorder in children characterized by a normal neurodevelopmental process in the first 6-18 months followed by a period of motor and vocal deterioration with stereotypic hand movements. Incidence of RTT is mostly due to de novo mutation in the MECP2 gene (methyl-CpG-binding protein 2). METHODS:The study assessed 27 female patients presented with classical RTT phenotype age range from 18 months to 48 months. Specialist carried out the clinical evaluation and diagnosis according to RTT diagnosis criteria. Blood samples from patients were then collected for genomic DNA extraction. We next performed MECP2 gene amplification and sequencing of the whole coding region to screen for mutations. RESULT:MECP2 mutation was found in 20 patients (74%) including: 2 missense, 4 nonsense, 6 frameshift and 2 deletion mutation. The study identified 14 pathogenic mutations which we found 4 mutation, to our knowledge and extensive search, not priory reported in any mutation database or publication: c.1384-1385DelGT, c.1205insT, c.717delC and c.1132_1207del77. High percentage of C?>?T (70%) in CpG sites mutation was found. CONCLUSION:Our result reveals a high percentage of C?>?T mutation in CpG hot spot, which is more prone to modification and more likely to be detected in RTT as a disorder is strictly due to de novo mutations. The study is the first to identify the mutation spectrum of MECP2 gene in Vietnamese patients and also an important step toward better diagnosis and care for RTT patients in Vietnam.
Project description:Rett syndrome (RTT) is a severe and progressive neurological disorder, which mainly affects young females. Mutations of the methyl-CpG binding protein 2 (MECP2) gene are the most prevalent cause of classical RTT cases. MECP2 mutations or altered expression are also associated with a spectrum of neurodevelopmental disorders such as autism spectrum disorders with recent links to fetal alcohol spectrum disorders. Collectively, MeCP2 relation to these neurodevelopmental disorders highlights the importance of understanding the molecular mechanisms by which MeCP2 impacts brain development, mental conditions, and compromised brain function. Since MECP2 mutations were discovered to be the primary cause of RTT, a significant progress has been made in the MeCP2 research, with respect to the expression, function and regulation of MeCP2 in the brain and its contribution in RTT pathogenesis. To date, there have been intensive efforts in designing effective therapeutic strategies for RTT benefiting from mouse models and cells collected from RTT patients. Despite significant progress in MeCP2 research over the last few decades, there is still a knowledge gap between the in vitro and in vivo research findings and translating these findings into effective therapeutic interventions in human RTT patients. In this review, we will provide a synopsis of Rett syndrome as a severe neurological disorder and will discuss the role of MeCP2 in RTT pathophysiology.
Project description:Methyl-CpG binding protein 2 (MeCP2) is a transcriptional regulator and a chromatin-binding protein involved in neuronal development and maturation. Loss-of-function mutations in MeCP2 result in Rett syndrome (RTT), a neurodevelopmental disorder that is the main cause of mental retardation in females. MeCP2 is an intrinsically disordered protein (IDP) constituted by six domains. Two domains are the main responsible elements for DNA binding (methyl-CpG binding domain, MBD) and recruitment of gene transcription/silencing machinery (transcription repressor domain, TRD). These two domains concentrate most of the RTT-associated mutations. R106W and R133C are associated with severe and mild RTT phenotype, respectively. We have performed a comprehensive characterization of the structural and functional impact of these substitutions at molecular level. Because we have previously shown that the MBD-flanking disordered domains (N-terminal domain, NTD, and intervening domain, ID) exert a considerable influence on the structural and functional features of the MBD (Claveria-Gimeno, R. et al. Sci Rep. 2017, 7, 41635), here we report the biophysical study of the influence of the protein scaffold on the structural and functional effect induced by these two RTT-associated mutations. These results represent an example of how a given mutation may show different effects (sometimes opposing effects) depending on the molecular context.
Project description:PurposeRett syndrome (RTT) is a neurodevelopmental disorder caused primarily by de novo mutations in MECP2 and sometimes in CDKL5 and FOXG1. However, some RTT patients lack mutations in these genes.MethodsTwenty-two RTT patients without apparent MECP2, CDKL5, and FOXG1 mutations were subjected to both whole-exome sequencing and single-nucleotide polymorphism array-based copy-number variant (CNV) analyses.ResultsThree patients had MECP2 mutations initially missed by clinical testing. Of the remaining 19, 17 (89.5%) had 29 other likely pathogenic intragenic mutations and/or CNVs (10 patients had 2 or more). Interestingly, 13 patients had mutations in a gene/region previously reported in other neurodevelopmental disorders (NDDs), thereby providing a potential diagnostic yield of 68.4%. These mutations were significantly enriched in chromatin regulators (corrected P = 0.0068) and moderately enriched in postsynaptic cell membrane molecules (corrected P = 0.076), implicating glutamate receptor signaling.ConclusionThe genetic etiology of RTT without MECP2, CDKL5, and FOXG1 mutations is heterogeneous, overlaps with other NDDs, and complicated by a high mutation burden. Dysregulation of chromatin structure and abnormal excitatory synaptic signaling may form two common pathological bases of RTT.Genet Med 19 1, 13-19.
Project description:Mutations in MECP2 cause several neurological disorders of which Rett syndrome (RTT) represents the best-defined condition. Although mainly working as a transcriptional repressor, MeCP2 is a multifunctional protein revealing several activities, the involvement of which in RTT remains obscure. Besides being mainly localized in the nucleus, MeCP2 associates with the centrosome, an organelle from which primary cilia originate. Primary cilia function as "sensory antennae" protruding from most cells, and a link between primary cilia and mental illness has been recently demonstrated. We herein demonstrate that MeCP2 deficiency affects ciliogenesis in cultured cells, including neurons and RTT fibroblasts, and in the mouse brain. Consequently, the cilium-related Sonic Hedgehog pathway, which is essential for brain development and functioning, is impaired. Microtubule instability participates in these phenotypes that can be rescued by HDAC6 inhibition together with the recovery of RTT-related neuronal defects. Our data indicate defects of primary cilium as a novel pathogenic mechanism that by contributing to the clinical features of RTT might impact on proper cerebellum/brain development and functioning, thus becoming a novel therapeutic target.
Project description:Mutations in MECP2 cause several neurological disorders of which Rett syndrome (RTT) represents the best-defined condition. Although mainly working as a transcriptional repressor, MeCP2 is a multifunctional protein revealing several activities, the involvement of which in RTT remains obscure. Besides being mainly localized in the nucleus, MeCP2 associates with the centrosome, an organelle from which primary cilia originate. Primary cilia function as "sensory antennae" protruding from most cells, and a link between primary cilia and mental illness has recently been reported. We herein demonstrate that MeCP2 deficiency affects ciliogenesis in cultured cells, including neurons and RTT fibroblasts, and in the mouse brain. Consequently, the cilium-related Sonic Hedgehog pathway, which is essential for brain development and functioning, is impaired. Microtubule instability participates in these phenotypes that can be rescued by HDAC6 inhibition together with the recovery of RTT-related neuronal defects. Our data indicate defects of primary cilium as a novel pathogenic mechanism that by contributing to the clinical features of RTT might impact on proper cerebellum/brain development and functioning, thus providing a novel therapeutic target.