Unknown

Dataset Information

0

Supported Molybdenum Carbide and Nitride Catalysts for Carbon Dioxide Hydrogenation.


ABSTRACT: Catalysts based on molybdenum carbide or nitride nanoparticles (2-5 nm) supported on titania were prepared by wet impregnation followed by a thermal treatment under alkane (methane or ethane)/hydrogen or nitrogen/hydrogen mixture, respectively. The samples were characterized by elemental analysis, volumetric adsorption of nitrogen, X-ray diffraction, and aberration-corrected transmission electron microscopy. They were evaluated for the hydrogenation of CO2 in the 2-3 MPa and 200-300°C ranges using a gas-phase flow fixed bed reactor. CO, methane, methanol, and ethane (in fraction-decreasing order) were formed on carbides, whereas CO, methanol, and methane were formed on nitrides. The carbide and nitride phase stoichiometries were tuned by varying the preparation conditions, leading to C/Mo and N/Mo atomic ratios of 0.2-1.8 and 0.5-0.7, respectively. The carbide activity increased for lower carburizing alkane concentration and temperature, i.e., lower C/Mo ratio. Enhanced carbide performances were obtained with pure anatase titania support as compared to P25 (anatase/rutile) titania or zirconia, with a methanol selectivity up to 11% at 250°C. The nitride catalysts appeared less active but reached a methanol selectivity of 16% at 250°C.

SUBMITTER: Abou Hamdan M 

PROVIDER: S-EPMC7296157 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Supported Molybdenum Carbide and Nitride Catalysts for Carbon Dioxide Hydrogenation.

Abou Hamdan Marwa M   Nassereddine Abdallah A   Checa Ruben R   Jahjah Mohamad M   Pinel Catherine C   Piccolo Laurent L   Perret Noémie N  

Frontiers in chemistry 20200609


Catalysts based on molybdenum carbide or nitride nanoparticles (2-5 nm) supported on titania were prepared by wet impregnation followed by a thermal treatment under alkane (methane or ethane)/hydrogen or nitrogen/hydrogen mixture, respectively. The samples were characterized by elemental analysis, volumetric adsorption of nitrogen, X-ray diffraction, and aberration-corrected transmission electron microscopy. They were evaluated for the hydrogenation of CO<sub>2</sub> in the 2-3 MPa and 200-300°C  ...[more]

Similar Datasets

| S-EPMC3985936 | biostudies-other
| S-EPMC9822247 | biostudies-literature
| S-EPMC6003949 | biostudies-literature
| S-EPMC8052344 | biostudies-literature
| S-EPMC10150395 | biostudies-literature
| S-EPMC9449348 | biostudies-literature
| S-EPMC9055482 | biostudies-literature
| S-EPMC8074364 | biostudies-literature
| S-EPMC6714538 | biostudies-literature
| S-EPMC9087181 | biostudies-literature