Unknown

Dataset Information

0

COVID-19: The unreasonable effectiveness of simple models


ABSTRACT: Highlights • COVID-19 outbreak belongs to the simple universality class of the SIR model and extensions thereof.• The unpredictable non-stationarity of the testing frames behind the figures reported by national authorities sets a fundamental limitation to any theoretical approach.• The time evolution of the reporting rates controls the occurrence of the apparent epidemic peak, which typically follows the true one in countries that were not vigorous enough in their testing at the onset of the outbreak. When the novel coronavirus disease SARS-CoV2 (COVID-19) was officially declared a pandemic by the WHO in March 2020, the scientific community had already braced up in the effort of making sense of the fast-growing wealth of data gathered by national authorities all over the world. However, despite the diversity of novel theoretical approaches and the comprehensiveness of many widely established models, the official figures that recount the course of the outbreak still sketch a largely elusive and intimidating picture. Here we show unambiguously that the dynamics of the COVID-19 outbreak belongs to the simple universality class of the SIR model and extensions thereof. Our analysis naturally leads us to establish that there exists a fundamental limitation to any theoretical approach, namely the unpredictable non-stationarity of the testing frames behind the reported figures. However, we show how such bias can be quantified self-consistently and employed to mine useful and accurate information from the data. In particular, we describe how the time evolution of the reporting rates controls the occurrence of the apparent epidemic peak, which typically follows the true one in countries that were not vigorous enough in their testing at the onset of the outbreak. The importance of testing early and resolutely appears as a natural corollary of our analysis, as countries that tested massively at the start clearly had their true peak earlier and less deaths overall.

SUBMITTER: Carletti T 

PROVIDER: S-EPMC7297692 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7769554 | biostudies-literature
| S-EPMC7970752 | biostudies-literature
| S-EPMC6367976 | biostudies-literature
| S-BSST563 | biostudies-other
| S-EPMC7817444 | biostudies-literature
| S-SCDT-10_15252-EMBR_202256055 | biostudies-other
| S-BSST416 | biostudies-other
| S-EPMC8034752 | biostudies-literature
2024-08-28 | GSE264189 | GEO
| S-EPMC5137727 | biostudies-literature