Unknown

Dataset Information

0

Single-cell lineage tracing by integrating CRISPR-Cas9 mutations with transcriptomic data.


ABSTRACT: Recent studies combine two novel technologies, single-cell RNA-sequencing and CRISPR-Cas9 barcode editing for elucidating developmental lineages at the whole organism level. While these studies provided several insights, they face several computational challenges. First, lineages are reconstructed based on noisy and often saturated random mutation data. Additionally, due to the randomness of the mutations, lineages from multiple experiments cannot be combined to reconstruct a species-invariant lineage tree. To address these issues we developed a statistical method, LinTIMaT, which reconstructs cell lineages using a maximum-likelihood framework by integrating mutation and expression data. Our analysis shows that expression data helps resolve the ambiguities arising in when lineages are inferred based on mutations alone, while also enabling the integration of different individual lineages for the reconstruction of an invariant lineage tree. LinTIMaT lineages have better cell type coherence, improve the functional significance of gene sets and provide new insights on progenitors and differentiation pathways.

SUBMITTER: Zafar H 

PROVIDER: S-EPMC7298005 | biostudies-literature | 2020 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Single-cell lineage tracing by integrating CRISPR-Cas9 mutations with transcriptomic data.

Zafar Hamim H   Lin Chieh C   Bar-Joseph Ziv Z  

Nature communications 20200616 1


Recent studies combine two novel technologies, single-cell RNA-sequencing and CRISPR-Cas9 barcode editing for elucidating developmental lineages at the whole organism level. While these studies provided several insights, they face several computational challenges. First, lineages are reconstructed based on noisy and often saturated random mutation data. Additionally, due to the randomness of the mutations, lineages from multiple experiments cannot be combined to reconstruct a species-invariant l  ...[more]

Similar Datasets

| S-EPMC5942543 | biostudies-literature
| S-EPMC11333585 | biostudies-literature
| S-EPMC6408267 | biostudies-literature
| S-EPMC7155257 | biostudies-literature
| S-EPMC6469926 | biostudies-literature
| S-EPMC6700744 | biostudies-literature
2024-11-20 | GSE261211 | GEO
2019-04-11 | GSE122578 | GEO
| S-EPMC4264059 | biostudies-literature
| S-EPMC9581332 | biostudies-literature