Genome engineering of induced pluripotent stem cells to manufacture natural killer cell therapies.
Ontology highlight
ABSTRACT: Natural killer (NK) cells play a crucial role in host immunity by detecting cells that downregulate MHC class I presentation and upregulate stress ligands, as commonly seen in cancers. Current NK therapies using primary NK cells are prone to manufacturing issues related to expansion and storage. Alternative cell sources utilizing immortalized NK cell lines require irradiation and are dependent on systemic IL-2 administration, which has been associated with adverse effects. In contrast, NK cells differentiated from induced pluripotent stem cells (iPSC-NK cells) offer an off-the-shelf alternative that may overcome these bottlenecks. The development of a serum-free and feeder-free differentiation protocol allows for the manufacturing of clinically adaptable iPSC-NK cells that are equally as effective as primary NK cells and the NK-92 cell line for many indications. Moreover, genetic modifications targeting NK-mediated antibody-dependent cellular cytotoxicity capabilities, cytotoxicity, and checkpoint inhibitors may increase the therapeutic potential of iPSC-NK products. This review will highlight the current sources for NK therapies and their respective constraints, discuss recent developments in the manufacturing and genetic engineering of iPSC-NK cells, and provide an overview of ongoing clinical trials using NK cells.
SUBMITTER: Shankar K
PROVIDER: S-EPMC7298853 | biostudies-literature | 2020 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA