Synergism of Multicomponent Catalysis: One-Dimensional Pt-Rh-Pd Nanochain Catalysts for Efficient Methanol Oxidation.
Ontology highlight
ABSTRACT: Designing Pt-based alloy catalysts with multicomponent composition and a controllable structure is important to improve the utilization efficiency of precious metals and catalytic activity, but it still face a lot of challenges for simple preparation. Herein, we used insulin amyloid fibrils as templates and their own one-dimensional spiral structure to synthesize Pt-Rh-Pd ternary alloy nanochains under mild conditions. The prepared Pt-Rh-Pd alloy nanochains (NCs) have uniform diameter, and the particle size is only 2 nm. This ultrafine structure increases the specific surface area of the catalyst to a certain extent, and the synergistic effect of the three metals improves the catalytic performance. Compared with commercial Pt/C and binary Pt-Rh NCs, the as-presented Pt-Rh-Pd NCs show better methanol oxidation activity ability and stability against CO poisoning. The peak current density of front sweep is 1.48 mA cm-2, which is 1.7 times higher than that of commercial Pt/C (0.89 mA cm-2) and 1.4 times higher than that of the Pt-Rh NCs (1.07 mA cm-2), indicating great application potential as high-performance electrocatalysts in fuel cells.
SUBMITTER: Jiang Y
PROVIDER: S-EPMC7315591 | biostudies-literature | 2020 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA