Unknown

Dataset Information

0

Bright Blue and Green Luminescence of Sb(III) in Double Perovskite Cs2MInCl6 (M = Na, K) Matrices.


ABSTRACT: The vast structural and compositional space of metal halides has recently become a major research focus for designing inexpensive and versatile light sources; in particular, for applications in displays, solid-state lighting, lasing, etc. Compounds with isolated ns2-metal halide centers often exhibit bright broadband emission that stems from self-trapped excitons (STEs). The Sb(III) halides are attractive STE emitters due to their low toxicity and oxidative stability; however, coupling these features with an appropriately robust, fully inorganic material containing Sb3+ in an octahedral halide environment has proven to be a challenge. Here, we investigate Sb3+ as a dopant in a solution-grown metal halide double perovskite (DP) matrix, namely Cs2MInCl6:xSb (M = Na, K, x = 0-100%). Cs2KInCl6 is found to crystallize in the tetragonal DP phase, unlike Cs2NaInCl6 that adopts the traditional cubic DP structure. This structural difference results in distinct emission colors, as Cs2NaInCl6:xSb and Cs2KInCl6:xSb compounds exhibit broadband blue and green emissions, respectively, with photoluminescence quantum yields (PLQYs) of up to 93%. Spectroscopic and computational investigations confirm that this efficient emission originates from Sb(III)-hosted STEs. These fully inorganic DP compounds demonstrate that Sb(III) can be incorporated as a bright emissive center for stable lighting applications.

SUBMITTER: Noculak A 

PROVIDER: S-EPMC7315817 | biostudies-literature | 2020 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bright Blue and Green Luminescence of Sb(III) in Double Perovskite Cs<sub>2</sub>MInCl<sub>6</sub> (M = Na, K) Matrices.

Noculak Agnieszka A   Morad Viktoriia V   McCall Kyle M KM   Yakunin Sergii S   Shynkarenko Yevhen Y   Wörle Michael M   Kovalenko Maksym V MV  

Chemistry of materials : a publication of the American Chemical Society 20200608 12


The vast structural and compositional space of metal halides has recently become a major research focus for designing inexpensive and versatile light sources; in particular, for applications in displays, solid-state lighting, lasing, etc. Compounds with isolated ns<sup>2</sup>-metal halide centers often exhibit bright broadband emission that stems from self-trapped excitons (STEs). The Sb(III) halides are attractive STE emitters due to their low toxicity and oxidative stability; however, couplin  ...[more]

Similar Datasets

| S-EPMC7065093 | biostudies-literature
| S-EPMC7728324 | biostudies-literature
| S-EPMC7493303 | biostudies-literature
| S-EPMC7181313 | biostudies-literature
| S-EPMC7020792 | biostudies-literature
| S-EPMC7493224 | biostudies-literature
| S-EPMC8747241 | biostudies-literature
| S-EPMC6955683 | biostudies-literature
| S-EPMC6849336 | biostudies-literature
| S-EPMC9331230 | biostudies-literature