Unknown

Dataset Information

0

Nearest-neighbor parameters for predicting DNA duplex stability in diverse molecular crowding conditions.


ABSTRACT: The intracellular environment is crowded and heterogeneous. Although the thermodynamic stability of nucleic acid duplexes is predictable in dilute solutions, methods of predicting such stability under specific intracellular conditions are not yet available. We recently showed that the nearest-neighbor model for self-complementary DNA is valid under molecular crowding condition of 40% polyethylene glycol with an average molecular weight of 200 (PEG 200) in 100 mM NaCl. Here, we determined nearest-neighbor parameters for DNA duplex formation under the same crowding condition to predict the thermodynamics of DNA duplexes in the intracellular environment. Preferential hydration of the nucleotides was found to be the key factor for nearest-neighbor parameters in the crowding condition. The determined parameters were shown to predict the thermodynamic parameters (?H°, ?S°, and ?G°37) and melting temperatures (T m) of the DNA duplexes in the crowding condition with significant accuracy. Moreover, we proposed a general method for predicting the stability of short DNA duplexes in different cosolutes based on the relationship between duplex stability and the water activity of the cosolute solution. The method described herein would be valuable for investigating biological processes that occur under specific intracellular crowded conditions and for the application of DNA-based biotechnologies in crowded environments.

SUBMITTER: Ghosh S 

PROVIDER: S-EPMC7321957 | biostudies-literature | 2020 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Nearest-neighbor parameters for predicting DNA duplex stability in diverse molecular crowding conditions.

Ghosh Saptarshi S   Takahashi Shuntaro S   Ohyama Tatsuya T   Endoh Tamaki T   Tateishi-Karimata Hisae H   Sugimoto Naoki N  

Proceedings of the National Academy of Sciences of the United States of America 20200610 25


The intracellular environment is crowded and heterogeneous. Although the thermodynamic stability of nucleic acid duplexes is predictable in dilute solutions, methods of predicting such stability under specific intracellular conditions are not yet available. We recently showed that the nearest-neighbor model for self-complementary DNA is valid under molecular crowding condition of 40% polyethylene glycol with an average molecular weight of 200 (PEG 200) in 100 mM NaCl. Here, we determined nearest  ...[more]

Similar Datasets

| S-EPMC10201447 | biostudies-literature
| S-EPMC6468164 | biostudies-literature
| S-EPMC7708073 | biostudies-literature
2010-05-22 | E-GEOD-14547 | biostudies-arrayexpress
2009-03-01 | GSE14547 | GEO
| S-EPMC2877693 | biostudies-literature
| S-EPMC5728412 | biostudies-literature
| S-EPMC6468326 | biostudies-literature
| S-EPMC3142330 | biostudies-literature