Project description:The stability of Watson-Crick paired RNA/DNA hybrids is important for designing optimal oligonucleotides for ASO (Antisense Oligonucleotide) and CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas9 techniques. Previous nearest-neighbour (NN) parameters for predicting hybrid stability in a 1 M NaCl solution, however, may not be applicable for predicting stability at salt concentrations closer to physiological condition (e.g. ∼100 mM Na+ or K+ in the presence or absence of Mg2+). Herein, we report measured thermodynamic parameters of 38 RNA/DNA hybrids at 100 mM NaCl and derive new NN parameters to predict duplex stability. Predicted ΔG°37 and Tm values based on the established NN parameters agreed well with the measured values with 2.9% and 1.1°C deviations, respectively. The new results can also be used to make precise predictions for duplexes formed in 100 mM KCl or 100 mM NaCl in the presence of 1 mM Mg2+, which can mimic an intracellular and extracellular salt condition, respectively. Comparisons of the predicted thermodynamic parameters with published data using ASO and CRISPR-Cas9 may allow designing shorter oligonucleotides for these techniques that will diminish the probability of non-specific binding and also improve the efficiency of target gene regulation.
Project description:The intracellular environment is crowded and heterogeneous. Although the thermodynamic stability of nucleic acid duplexes is predictable in dilute solutions, methods of predicting such stability under specific intracellular conditions are not yet available. We recently showed that the nearest-neighbor model for self-complementary DNA is valid under molecular crowding condition of 40% polyethylene glycol with an average molecular weight of 200 (PEG 200) in 100 mM NaCl. Here, we determined nearest-neighbor parameters for DNA duplex formation under the same crowding condition to predict the thermodynamics of DNA duplexes in the intracellular environment. Preferential hydration of the nucleotides was found to be the key factor for nearest-neighbor parameters in the crowding condition. The determined parameters were shown to predict the thermodynamic parameters (∆H°, ∆S°, and ∆G°37) and melting temperatures (T m) of the DNA duplexes in the crowding condition with significant accuracy. Moreover, we proposed a general method for predicting the stability of short DNA duplexes in different cosolutes based on the relationship between duplex stability and the water activity of the cosolute solution. The method described herein would be valuable for investigating biological processes that occur under specific intracellular crowded conditions and for the application of DNA-based biotechnologies in crowded environments.
Project description:It is essential to study RNA under molecular crowding conditions to better predict secondary structures of RNAs in vivo. No systematic study has been completed to determine the effects of molecular crowding on RNA duplexes of varying lengths and sequence composition. Here, optical melting, circular dichroism, and osmometry data were collected for RNA duplexes in a 20% polyethylene glycol (with an average molecular weight of 200 g/mol) solution (PEG 200), and nearest neighbor parameters were derived using this data. RNA duplexes are destabilized, on average, 1.02 kcal/mol in the presence of 20% PEG 200. The ΔG°37 values predicted by the nearest neighbor parameters for RNA duplexes in 20% PEG 200 were ∼0.65 kcal/mol closer to experimental ΔG°37 values than those predicted by the standard nearest neighbor model. For one DNA sequence in solution with small crowders, the ΔG°37 values predicted by the 20% PEG 200 RNA nearest neighbor parameters were closer to the experimental values than ΔG°37 values predicted by either the RNA or DNA standard nearest neighbor models. This indicates that the nearest neighbor parameters for RNA duplexes in 20% PEG 200 may be generalizable to RNA and DNA duplexes in solutions with small crowding agents.
Project description:Quantifying interactions in DNA microarrays is of central importance for a better understanding of their functioning. Hybridization thermodynamics for nucleic acid strands in aqueous solution can be described by the so-called nearest-neighbor model, which estimates the hybridization free energy of a given sequence as a sum of dinucleotide terms. Compared with its solution counterparts, hybridization in DNA microarrays may be hindered due to the presence of a solid surface and of a high density of DNA strands. We present here a study aimed at the determination of hybridization free energies in DNA microarrays. Experiments are performed on custom Agilent slides. The solution contains a single oligonucleotide. The microarray contains spots with a perfect matching complementary sequence and other spots with one or two mismatches: in total 1006 different probe spots, each replicated 15 times per microarray. The free energy parameters are directly fitted from microarray data. The experiments demonstrate a clear correlation between hybridization free energies in the microarray and in solution. The experiments are fully consistent with the Langmuir model at low intensities, but show a clear deviation at intermediate (non-saturating) intensities. These results provide new interesting insights for the quantification of molecular interactions in DNA microarrays. Keywords: experiment to assess technical aspects of hybridization in microarrays
Project description:In this study, we conducted a thermodynamic analysis of RNA helix stability in the Eco80 artificial cytoplasm, which mimics in vivo conditions. Eco80 contains 80% of Escherichia coli metabolites, with biological concentrations of metal ions including 2 mM free Mg2+ and 29 mM metabolite-chelated Mg2+. We determined a set of Watson-Crick free energy nearest-neighbor parameters in Eco80 and found that helices are less stable by ∆∆Go37 ~ 1 kcal/mol in comparison to the traditional 1 M NaCl condition. Analysis indicates that Eco80 reduces the stability of three nearest-neighbor pairs. We applied this information to update the nearest-neighbor model using the RNAstructure package. We determined that our in vivo-like corrections have minimal effects on the prediction of RNA secondary structures determined in vitro and in silico. In contrast, in vivo-like corrections markedly improve prediction of fractional RNA base pairing in E. coli, as benchmarked with in vivo RNA chemical probing data using both DMS and EDC. In summary, our thermodynamic and chemical probing analyses of RNA helices in Eco80 indicate that RNA secondary structures are less stable in cells than in artificially stable in vitro buffer conditions such as 1 M NaCl.
Project description:Quantifying interactions in DNA microarrays is of central importance for a better understanding of their functioning. Hybridization thermodynamics for nucleic acid strands in aqueous solution can be described by the so-called nearest-neighbor model, which estimates the hybridization free energy of a given sequence as a sum of dinucleotide terms. Compared with its solution counterparts, hybridization in DNA microarrays may be hindered due to the presence of a solid surface and of a high density of DNA strands. We present here a study aimed at the determination of hybridization free energies in DNA microarrays. Experiments are performed on custom Agilent slides. The solution contains a single oligonucleotide. The microarray contains spots with a perfect matching complementary sequence and other spots with one or two mismatches: in total 1006 different probe spots, each replicated 15 times per microarray. The free energy parameters are directly fitted from microarray data. The experiments demonstrate a clear correlation between hybridization free energies in the microarray and in solution. The experiments are fully consistent with the Langmuir model at low intensities, but show a clear deviation at intermediate (non-saturating) intensities. These results provide new interesting insights for the quantification of molecular interactions in DNA microarrays. Keywords: experiment to assess technical aspects of hybridization in microarrays The study consists of four experiments. Each experiments consists of one slide with eight identical microarrays which were hybridized with an identical solution but at a different concentration. Per experiment a single target sequence in solution was used for hybridization: target1 to target4 (Table 1 main manuscript or description of samples below). Each target oligo was bought in duplicate, referred to as oligos a and b. In experiment 1 and 2 a fragmentation step (f) was applied. More details can be found in the main manuscript especially Table 3.
Project description:The most popular RNA secondary structure prediction programs utilize free energy (ΔG°37) minimization and rely upon thermodynamic parameters from the nearest neighbor (NN) model. Experimental parameters are derived from a series of optical melting experiments; however, acquiring enough melt data to derive accurate NN parameters with modified base pairs is expensive and time consuming. Given the multitude of known natural modifications and the continuing use and development of unnatural nucleotides, experimentally characterizing all modified NNs is impractical. This dilemma necessitates a computational model that can predict NN thermodynamics where experimental data is scarce or absent. Here, we present a combined molecular dynamics/quantum mechanics protocol that accurately predicts experimental NN ΔG°37 parameters for modified nucleotides with neighboring Watson-Crick base pairs. NN predictions for Watson-Crick and modified base pairs yielded an overall RMSD of 0.32 kcal/mol when compared with experimentally derived parameters. NN predictions involving modified bases without experimental parameters (N6-methyladenosine, 2-aminopurineriboside, and 5-methylcytidine) demonstrated promising agreement with available experimental melt data. This procedure not only yields accurate NN ΔG°37 predictions but also quantifies stacking and hydrogen bonding differences between modified NNs and their canonical counterparts, allowing investigators to identify energetic differences and providing insight into sources of (de)stabilization from nucleotide modifications.
Project description:In this article, it is shown how optimized and dedicated microarray experiments can be used to study the thermodynamics of DNA hybridization for a large number of different conformations in a highly parallel fashion. In particular, free energy penalties for mismatches are obtained in two independent ways and are shown to be correlated with values from melting experiments in solution reported in the literature. The additivity principle, which is at the basis of the nearest-neighbor model, and according to which the penalty for two isolated mismatches is equal to the sum of the independent penalties, is thoroughly tested. Additivity is shown to break down for a mismatch distance below 5 nt. The behavior of mismatches in the vicinity of the helix edges, and the behavior of tandem mismatches are also investigated. Finally, some thermodynamic outlying sequences are observed and highlighted. These sequences contain combinations of GA mismatches. The analysis of the microarray data reported in this article provides new insights on the DNA hybridization parameters and can help to increase the accuracy of hybridization-based technologies.
Project description:RNA performs various spatiotemporal functions in living cells. As the solution environments significantly affect the stability of RNA duplexes, a stability prediction of the RNA duplexes in diverse crowded conditions is required to understand and modulate gene expression in heterogeneously crowded intracellular conditions. Herein, we determined the nearest-neighbor (NN) parameters for RNA duplex formation when subjected to crowding conditions with an ionic concentration relevant to that found in cells. Determination of the individual contributions of excluded volume effect and water activity to each of the NN parameters in crowded environments enabled prediction of the thermodynamic parameters and their melting temperatures for plenty of tested RNA duplex formation in vitro and in cell with significant accuracy. The parameters reported herein will help predicting RNA duplex stability in different crowded environments, which will lead to an improved understanding of the stability-function relationship for RNAs in various cellular organelles with different molecular environments.
Project description:Nearest neighbor parameters for estimating the folding stability of RNA secondary structures are in widespread use. For helices, current parameters penalize terminal AU base pairs relative to terminal GC base pairs. We curated an expanded database of helix stabilities determined by optical melting experiments. Analysis of the updated database shows that terminal penalties depend on the sequence identity of the adjacent penultimate base pair. New nearest neighbor parameters that include this additional sequence dependence accurately predict the measured values of 271 helices in an updated database with a correlation coefficient of 0.982. This refined understanding of helix ends facilitates fitting terms for base pair stacks with GU pairs. Prior parameter sets treated 5'GGUC3' paired to 3'CUGG5' separately from other 5'GU3'/3'UG5' stacks. The improved understanding of helix end stability, however, makes the separate treatment unnecessary. Introduction of the additional terms was tested with three optical melting experiments. The average absolute difference between measured and predicted free energy changes at 37°C for these three duplexes containing terminal adjacent AU and GU pairs improved from 1.38 to 0.27 kcal/mol. This confirms the need for the additional sequence dependence in the model.