Opposing effects of an F-box protein and the HSP90 chaperone network on microtubule stability and neurite growth in Caenorhabditis elegans.
Ontology highlight
ABSTRACT: Molecular chaperones often work collaboratively with the ubiquitylation-proteasome system (UPS) to facilitate the degradation of misfolded proteins, which typically safeguards cellular differentiation and protects cells from stress. In this study, however, we report that the Hsp70/Hsp90 chaperone machinery and an F-box protein, MEC-15, have opposing effects on neuronal differentiation, and that the chaperones negatively regulate neuronal morphogenesis and functions. Using the touch receptor neurons (TRNs) of Caenorhabditis elegans, we find that mec-15(-) mutants display defects in microtubule formation, neurite growth, synaptic development and neuronal functions, and that these defects can be rescued by the loss of Hsp70/Hsp90 chaperones and co-chaperones. MEC-15 probably functions in a Skp-, Cullin- and F-box- containing complex to degrade DLK-1, which is an Hsp90 client protein stabilized by the chaperones. The abundance of DLK-1, and likely other Hsp90 substrates, is fine-tuned by the antagonism between MEC-15 and the chaperones; this antagonism regulates TRN development, as well as synaptic functions of GABAergic motor neurons. Therefore, a balance between the UPS and the chaperones tightly controls neuronal differentiation.
SUBMITTER: Zheng C
PROVIDER: S-EPMC7328132 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA