Unknown

Dataset Information

0

Glutant?ase: a database for improving the rational design of glucose-tolerant ?-glucosidases.


ABSTRACT: ?-glucosidases are key enzymes used in second-generation biofuel production. They act in the last step of the lignocellulose saccharification, converting cellobiose in glucose. However, most of the ?-glucosidases are inhibited by high glucose concentrations, which turns it a limiting step for industrial production. Thus, ?-glucosidases have been targeted by several studies aiming to understand the mechanism of glucose tolerance, pH and thermal resistance for constructing more efficient enzymes. In this paper, we present a database of ?-glucosidase structures, called Glutant?ase. Our database includes 3842 GH1 ?-glucosidase sequences collected from UniProt. We modeled the sequences by comparison and predicted important features in the 3D-structure of each enzyme. Glutant?ase provides information about catalytic and conserved amino acids, residues of the coevolution network, protein secondary structure, and residues located in the channel that guides to the active site. We also analyzed the impact of beneficial mutations reported in the literature, predicted in analogous positions, for similar enzymes. We suggested these mutations based on six previously described mutants that showed high catalytic activity, glucose tolerance, or thermostability (A404V, E96K, H184F, H228T, L441F, and V174C). Then, we used molecular docking to verify the impact of the suggested mutations in the affinity of protein and ligands (substrate and product). Our results suggest that only mutations based on the H228T mutant can reduce the affinity for glucose (product) and increase affinity for cellobiose (substrate), which indicates an increment in the resistance to product inhibition and agrees with computational and experimental results previously reported in the literature. More resistant ?-glucosidases are essential to saccharification in industrial applications. However, thermostable and glucose-tolerant ?-glucosidases are rare, and their glucose tolerance mechanisms appear to be related to multiple and complex factors. We gather here, a set of information, and made predictions aiming to provide a tool for supporting the rational design of more efficient ?-glucosidases. We hope that Glutant?ase can help improve second-generation biofuel production. Glutant?ase is available at http://bioinfo.dcc.ufmg.br/glutantbase .

SUBMITTER: Mariano D 

PROVIDER: S-EPMC7329481 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Glutantβase: a database for improving the rational design of glucose-tolerant β-glucosidases.

Mariano Diego D   Pantuza Naiara N   Santos Lucianna H LH   Rocha Rafael E O REO   de Lima Leonardo H F LHF   Bleicher Lucas L   de Melo-Minardi Raquel Cardoso RC  

BMC molecular and cell biology 20200701 1


Β-glucosidases are key enzymes used in second-generation biofuel production. They act in the last step of the lignocellulose saccharification, converting cellobiose in glucose. However, most of the β-glucosidases are inhibited by high glucose concentrations, which turns it a limiting step for industrial production. Thus, β-glucosidases have been targeted by several studies aiming to understand the mechanism of glucose tolerance, pH and thermal resistance for constructing more efficient enzymes.  ...[more]

Similar Datasets

| S-EPMC3285144 | biostudies-literature
| S-EPMC6305311 | biostudies-literature
| S-EPMC3184957 | biostudies-literature
| S-EPMC5072709 | biostudies-literature
2015-11-02 | E-MTAB-2948 | biostudies-arrayexpress
| S-EPMC10128134 | biostudies-literature
2024-06-01 | GSE262739 | GEO
| S-EPMC4414599 | biostudies-literature
| S-EPMC10799840 | biostudies-literature
| S-EPMC4658561 | biostudies-literature