Unknown

Dataset Information

0

Transverse relaxation rates of pulmonary dissolved-phase Hyperpolarized 129 Xe as a biomarker of lung injury in idiopathic pulmonary fibrosis.


ABSTRACT:

Purpose

The MR properties (chemical shifts and R2∗ decay rates) of dissolved-phase hyperpolarized (HP) 129 Xe are confounded by the large magnetic field inhomogeneity present in the lung. This work improves measurements of these properties using a model-based image reconstruction to characterize the R2∗ decay rates of dissolved-phase HP 129 Xe in healthy subjects and patients with idiopathic pulmonary fibrosis (IPF).

Methods

Whole-lung MRS and 3D radial MRI with four gradient echoes were performed after inhalation of HP 129 Xe in healthy subjects and patients with IPF. A model-based image reconstruction formulated as a regularized optimization problem was solved iteratively to measure regional signal intensity in the gas, barrier, and red blood cell (RBC) compartments, while simultaneously measuring their chemical shifts and R2∗ decay rates.

Results

The estimation of spectral properties reduced artifacts in images of HP 129 Xe in the gas, barrier, and RBC compartments and improved image SNR by over 20%. R2∗ decay rates of the RBC and barrier compartments were lower in patients with IPF compared to healthy subjects (P < 0.001 and P = 0.005, respectively) and correlated to DLCO (R = 0.71 and 0.64, respectively). Chemical shift of the RBC component measured with whole-lung spectroscopy was significantly different between IPF and normal subjects (P = 0.022).

Conclusion

Estimates for R2∗ in both barrier and RBC dissolved-phase HP 129 Xe compartments using a regional signal model improved image quality for dissolved-phase images and provided additional biomarkers of lung injury in IPF.

SUBMITTER: Kammerman J 

PROVIDER: S-EPMC7329592 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6750965 | biostudies-literature
| S-EPMC5836876 | biostudies-literature
| S-EPMC9919357 | biostudies-literature
| S-EPMC10206636 | biostudies-literature
| S-EPMC8178811 | biostudies-literature
| S-EPMC5339783 | biostudies-literature
| S-EPMC7473944 | biostudies-literature
| S-EPMC7526952 | biostudies-literature
| S-EPMC7083696 | biostudies-literature
| S-EPMC7775756 | biostudies-literature