Ontology highlight
ABSTRACT:
SUBMITTER: Han D
PROVIDER: S-EPMC7335586 | biostudies-literature | 2020 Mar
REPOSITORIES: biostudies-literature
Han Donghee D Kolli Kranthi K KK Al'Aref Subhi J SJ Baskaran Lohendran L van Rosendael Alexander R AR Gransar Heidi H Andreini Daniele D Budoff Matthew J MJ Cademartiri Filippo F Chinnaiyan Kavitha K Choi Jung Hyun JH Conte Edoardo E Marques Hugo H de Araújo Gonçalves Pedro P Gottlieb Ilan I Hadamitzky Martin M Leipsic Jonathon A JA Maffei Erica E Pontone Gianluca G Raff Gilbert L GL Shin Sangshoon S Kim Yong-Jin YJ Lee Byoung Kwon BK Chun Eun Ju EJ Sung Ji Min JM Lee Sang-Eun SE Virmani Renu R Samady Habib H Stone Peter P Narula Jagat J Berman Daniel S DS Bax Jeroen J JJ Shaw Leslee J LJ Lin Fay Y FY Min James K JK Chang Hyuk-Jae HJ
Journal of the American Heart Association 20200222 5
Background Rapid coronary plaque progression (RPP) is associated with incident cardiovascular events. To date, no method exists for the identification of individuals at risk of RPP at a single point in time. This study integrated coronary computed tomography angiography-determined qualitative and quantitative plaque features within a machine learning (ML) framework to determine its performance for predicting RPP. Methods and Results Qualitative and quantitative coronary computed tomography angio ...[more]