Unknown

Dataset Information

0

Inhibition of the RUNX1-CBF? transcription factor complex compromises mammary epithelial cell identity: a phenotype potentially stabilized by mitotic gene bookmarking.


ABSTRACT: RUNX1 has recently been shown to play an important role in determination of mammary epithelial cell identity. However, mechanisms by which loss of the RUNX1 transcription factor in mammary epithelial cells leads to epithelial-to-mesenchymal transition (EMT) are not known. Here, we report that interaction between RUNX1 and its heterodimeric partner CBF? is essential for sustaining mammary epithelial cell identity. Disruption of RUNX1-CBF? interaction, DNA binding, and association with mitotic chromosomes alters cell morphology, global protein synthesis, and phenotype-related gene expression. During interphase, RUNX1 is organized as punctate, predominantly nuclear, foci that are dynamically redistributed during mitosis, with a subset localized to mitotic chromosomes. Genome-wide RUNX1 occupancy profiles for asynchronous, mitotically enriched, and early G1 breast epithelial cells reveal RUNX1 associates with RNA Pol II-transcribed protein coding and long non-coding RNA genes and RNA Pol I-transcribed ribosomal genes critical for mammary epithelial proliferation, growth, and phenotype maintenance. A subset of these genes remains occupied by the protein during the mitosis to G1 transition. Together, these findings establish that the RUNX1-CBF? complex is required for maintenance of the normal mammary epithelial phenotype and its disruption leads to EMT. Importantly, our results suggest, for the first time, that RUNX1 mitotic bookmarking of a subset of epithelial-related genes may be an important epigenetic mechanism that contributes to stabilization of the mammary epithelial cell identity.

SUBMITTER: Rose JT 

PROVIDER: S-EPMC7335667 | biostudies-literature | 2020 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Inhibition of the RUNX1-CBFβ transcription factor complex compromises mammary epithelial cell identity: a phenotype potentially stabilized by mitotic gene bookmarking.

Rose Joshua T JT   Moskovitz Eliana E   Boyd Joseph R JR   Gordon Jonathan A JA   Bouffard Nicole A NA   Fritz Andrew J AJ   Illendula Anuradha A   Bushweller John H JH   Lian Jane B JB   Stein Janet L JL   Zaidi Sayyed K SK   Stein Gary S GS  

Oncotarget 20200630 26


RUNX1 has recently been shown to play an important role in determination of mammary epithelial cell identity. However, mechanisms by which loss of the RUNX1 transcription factor in mammary epithelial cells leads to epithelial-to-mesenchymal transition (EMT) are not known. Here, we report that interaction between RUNX1 and its heterodimeric partner CBFβ is essential for sustaining mammary epithelial cell identity. Disruption of RUNX1-CBFβ interaction, DNA binding, and association with mitotic chr  ...[more]

Similar Datasets

2020-07-14 | GSE121370 | GEO
| PRJNA497192 | ENA
| S-EPMC10303083 | biostudies-literature
| S-EPMC10425459 | biostudies-literature
| S-EPMC3425057 | biostudies-literature
| S-EPMC8897465 | biostudies-literature
| S-EPMC5156526 | biostudies-literature
| S-EPMC10948359 | biostudies-literature
| S-EPMC5392273 | biostudies-literature
| S-EPMC3210065 | biostudies-literature