Project description:BackgroundDuring the past two decades, avian influenza A H9N2 viruses have spread geographically and ecologically in China. Other than its current role in causing outbreaks in poultry and sporadic human infections by direct transmission, H9N2 virus could also serve as an progenitor for novel human avian influenza viruses including H5N1, H7N9 and H10N8. Hence, H9N2 virus is becoming a notable threat to public health. However, despite multiple lineages and genotypes that were detected by previous studies, the migration dynamics of the H9N2 virus in China is unclear. Increasing such knowledge would help us better prevent and control H9N2 as well as other future potentially threatening viruses from spreading across China. The objectives of this study were to determine the source, migration patterns, and the demography history of avian influenza A H9N2 virus that circulated in China.ResultsUsing Bayesian phylogeography framework, we showed that the H9N2 virus in mainland China may have originated from the Hong Kong Special Administrative Region (SAR). Southern China, most likely the Guangdong province acts as the primary epicentre for multiple H9N2 strains spreading across the whole country, and eastern China, most likely the Jiangsu province, acts as an important secondary source to seed outbreaks. Our demography inference suggests that during the long-term migration process, H9N2 evolved into multiple diverse lineages and then experienced a selective sweep, which reduced its genetic diversity. Importantly, such a selective sweep may pose a greater threat to public health because novel strains confer higher fitness advantages than strains being replaced and could generate new viruses through reassortment.ConclusionOur analyses indicate that migratory birds, poultry trade and transportation have all contributed to the spreading of the H9N2 virus in China. The ongoing migration and evolution of H9N2, which poses a constant threat to the human population, highlights the need for a more comprehensive surveillance of wild birds and for the enhancement of biosafety for China's poultry industry.
Project description:This is the first reported isolation of avian influenza virus (AIV) from emu in China. An outbreak of AIV infection occurred at an emu farm that housed 40 four-month-old birds. Various degrees of haemorrhage were discovered in the tissues of affected emus. Cell degeneration and necrosis were observed microscopically. Electron microscopy revealed round or oval virions with a diameter of 80 nm to 120 nm, surrounded by an envelope with spikes. The virus was classified as low pathogenic AIV (LPAIV), according to OIE standards. It was named A/Emu/HeNen/14/2004(H9N2)(Emu/HN/2004). The HA gene (1683bp) was amplified by RT-PCR and it was compared with other animal H9N2 AIV sequences in GenBank, the US National Institutes of Health genetic sequence database. The results suggested that Emu/HN/2004 may have come from an avian influenza virus (H9N2) from Southern China.
Project description:A 17-month-old boy in India with severe acute respiratory infection was laboratory confirmed to have avian influenza A(H9N2) virus infection. Complete genome analysis of the strain indicated a mixed lineage of G1 and H7N3. The strain also was found to be susceptible to adamantanes and neuraminidase inhibitors.
Project description:In February 2021, routine sentinel surveillance for influenza-like illness in Cambodia detected a human avian influenza A(H9N2) virus infection. Investigations identified no recent H9N2 virus infections in 43 close contacts. One chicken sample from the infected child's house was positive for H9N2 virus and genetically similar to the human virus.
Project description:Several zoonotic influenza A viruses detected in humans contain genes derived from avian H9N2 subtypes. We uncovered a Eurasian avian-like H1N1 swine influenza virus with polymerase basic 1 and matrix gene segments derived from the H9N2 subtype, suggesting that H9N2 viruses are infecting pigs and reassorting with swine influenza viruses in China.
Project description:Human outbreaks with avian influenza have been, so far, constrained by poor viral adaptation to non-avian hosts. This could be overcome via co-infection, whereby two strains share genetic material, allowing new hybrid strains to emerge. Identifying areas where co-infection is most likely can help target spaces for increased surveillance. Ecological niche modeling using remotely-sensed data can be used for this purpose. H5N1 and H9N2 influenza subtypes are endemic in Egyptian poultry. From 2006 to 2015, over 20,000 poultry and wild birds were tested at farms and live bird markets. Using ecological niche modeling we identified environmental, behavioral, and population characteristics of H5N1 and H9N2 niches within Egypt. Niches differed markedly by subtype. The subtype niches were combined to model co-infection potential with known occurrences used for validation. The distance to live bird markets was a strong predictor of co-infection. Using only single-subtype influenza outbreaks and publicly available ecological data, we identified areas of co-infection potential with high accuracy (area under the receiver operating characteristic (ROC) curve (AUC) 0.991).
Project description:BACKGROUND:Since 2008, a progressive pneumonia has become prevalent in broilers and laying hens. This disease occurrs the first day after hatching and lasts more than 30?days, resulting in approximately 70% morbidity and 30% mortality in broilers. The objective of this study was to isolate and identify the pathogens that are responsible for the progressive pneumonia and establish an animal model for drug screening. RESULTS:193 serum samples were collected from 8 intensive farms from 5 provinces in China and analysed in the current research. Our clinical survey showed that 65.2% to 100% of breeding broilers, breeding layers, broilers and laying hens were seropositive for ORT antibodies. From 8 intensive farms, six ORT isolates were identified by PCR and biochemical assays, and two H9N2 viruses were isolated. Newcastle Disease Virus (NDV) and Infectious BronchitisVirus (IBV) were excluded. Typical pneumonia and airsacculitis were observed both in broilers inoculated intraperitoneally with an ORT isolate alone and in those co-infected with ORT and H9N2 virus isolates. Specifically, the survival rate was 30%, 20%, 70%, 50% and 90% in birds inoculated with ORT+H9N2 virus, ORT followed by H9N2 virus, H9N2 virus followed by ORT, and ORT or H9N2 virus alone, respectively. CONCLUSIONS:The results of this study suggest that ORT infections of domestic poultry have been occurring frequently in China. ORT infection can induce higher economic losses and mortality if H9N2 AIV is also present. Although the isolation of ORT and H9N2 virus has been reported previously, there have been no reported co-infections of poultry with these two pathogens. This is the first report of co-infection of broilers with ORT and H9N2 virus, and this co-infection is probably associated with the outbreak of broiler airsacculitis in China, which has caused extensive economic losses.
Project description:The complete genomic sequence of a new H9N2 avian influenza virus (AIV), isolated in northwestern China, was determined. Sequence and phylogenetic analyses based on the sequences of eight genomic segments revealed that the isolate is phylogenetically related to the Y280-like sublineage.
Project description:BackgroundRecently, avian influenza virus has caused repeated worldwide outbreaks in humans. Live Poultry Markets (LPMs) play an important role in the circulation and reassortment of novel Avian Influenza Virus (AIVs). Aerosol transmission is one of the most important pathways for influenza virus to spread among poultry, from poultry to mammals, and among mammals.MethodsIn this study, air samples were collected from LPMs in Nanchang city between April 2014 and March 2015 to investigate possible aerosol transmission of AIVs. Air samples were detected for Flu A by Real-Time Reverse Transcription-Polymerase Chain Reaction (RRT-PCR). If samples were positive for Flu A, they were inoculated into 9- to 10-day-old specific-pathogen-free embryonated eggs. If the result was positive, the whole genome of the virus was sequenced by MiSeq. Phylogenetic trees of all 8 segments were constructed using MEGA 6.05 software.ResultsTo investigate the possible aerosol transmission of AIVs, 807 air samples were collected from LPMs in Nanchang city between April 2014 and March 2015. Based on RRT-PCR results, 275 samples (34.1%) were Flu A positive, and one virus was successfully isolated with embryonated eggs. The virus shared high nucleotide homology with H9N2 AIVs from South China.ConclusionsOur study provides further evidence that the air in LPMs can be contaminated by influenza viruses and their nucleic acids, and this should be considered when choosing and evaluating disinfection strategies in LPMs, such as regular air disinfection. Aerosolized viruses such as the H9N2 virus detected in this study can increase the risk of human infection when people are exposed in LPMs.