Project description:In 2022, we assessed avian influenza A virus subtype H5N6 seroprevalence among the general population in Guangdong Province, China, amid rising numbers of human infections. Among the tested samples, we found 1 to be seropositive, suggesting that the virus poses a low but present risk to the general population.
Project description:Since its first identification, the epizootic avian influenza A H7N9 virus has continued to cause infections in China. Two waves were observed during this outbreak. No cases were reported from Guangdong Province during the first wave, but this province became one of the prime outbreak sites during the second wave. In order to identify the transmission potential of this continuously evolving infectious virus, our research group monitored all clusters of H7N9 infections during the second wave of the epidemic in Guangdong Province. Epidemiological, clinical, and virological data on these patients were collected and analyzed. Three family clusters including six cases of H7N9 infection were recorded. The virus caused severe disease in two adult patients but only mild symptoms for all four pediatric patients. All patients reported direct poultry or poultry market exposure history. Relevant environment samples collected according to their reported exposures tested H7N9 positive. Virus isolates from patients in the same cluster shared high sequence similarities. In conclusion, although continually evolving, the currently circulating H7N9 viruses in Guangdong Province have not yet demonstrated the capacity for efficient and sustained person-to-person transmission.
Project description:BackgroundThe first H7N9 human case in south of China was confirmed in Guangdong Province on August 2013, outside of the typical influenza season. For investigating the H7N9 virus source and transmission in the local community, we analyze the epidemiology and genome features of the virus isolated from the first human infection detected in Guangdong Province.MethodsThe data including medical records, exposure history and time line of events for the H7N9 patient and close contacts was collected. Variation and genetic signatures of H7N9 virus in Guangdong was analyzed using ClustalW algorithm and comparison with mutations associated with changes in biological characteristics of the virus.ResultsThe female patient had a history of poultry exposure, and she was transferred from a local primary hospital to an intensive care unit (ICU) upon deterioration. No additional cases were reported. Similar to previous infections with avian influenza A (H7N9) virus, the patient presented with both upper and lower respiratory tract symptoms. Respiratory failure progressed quickly, and the patient recovered 4 weeks after the onset of symptoms. Genome analysis of the virus indicated that the predicted antigen city and internal genes of the virus are similar to previously reported H7N9 viruses. The isolated virus is susceptible to neuraminidase (NA) inhibitors but resistant to adamantine. Although this virus contains some unique mutations that were only detected in avian or environment-origin avian influenza A (H7N9) viruses, it is still quite similar to other human H7N9 isolates.ConclusionsThe epidemiological features and genome of the first H7N9 virus in Guangdong Province are similar to other human H7N9 infections. This virus may have existed in the environment and live poultry locally; therefore, it is important to be alert of the risk of H7N9 re-emergence in China, including emergence outside the typical influenza season.
Project description:Market surveillance showed continuing circulation of avian influenza A(H5N6) virus in live poultry markets in Guangdong Province in 2017, despite compulsory vaccination for avian influenza A(H5Nx) and A(H7N9). We analyzed H5N6 viruses from 2014-2018 from Guangdong Province, revealing antigenic drift and decreased antibody response against the vaccine strain in vaccinated chickens.
Project description:The five avian influenza A/H9N2 viruses isolated from wild birds in Jiangxi, China in 2015 are novel reassortants which most likely evolved from multiple lineages. They shared a high similarity with isolates from poultry, suggesting a frequent contact and continuous viral circulation at the bird-poultry interface. Given the continuous reassortment of H9N2 viruses, it will of substantial importance to implement routine surveillance in wild birds to successfully control avian influenza viruses and better the early warning system of the emerging reassortants with pandemic potential.
Project description:In December 2017, an influenza A(H9N2) virus (B51) was isolated from migratory waterfowl in Hubei Province, China. Phylogenetic analysis demonstrated that B51 is a novel reassortant influenza virus containing segments from human H7N4 virus and North American wild bird influenza viruses. This suggest that B51 has undergone multiple reassortment events.
Project description:We used active and passive surveillance to estimate nontyphoidal Salmonella (NTS) infection during 2012 in Guangdong Province, China. Under passive surveillance, for every reported NTS infection, an estimated 414.8 cases occurred annually. Under active surveillance, an estimated 35.8 cases occurred. Active surveillance provides remarkable advantages in incidence estimate.
Project description:In February 2021, routine sentinel surveillance for influenza-like illness in Cambodia detected a human avian influenza A(H9N2) virus infection. Investigations identified no recent H9N2 virus infections in 43 close contacts. One chicken sample from the infected child's house was positive for H9N2 virus and genetically similar to the human virus.