Project description:The prevalence of chronic obstructive pulmonary disease (COPD) in women is increasing, as is hospitalization for COPD. The number of women dying of COPD in the United States now surpasses men. Despite this, research suggests that physicians are still more likely to correctly diagnose men with COPD than women. Increased tobacco use in women likely explains some of the increase in the prevalence of COPD in women, but data suggest that women may actually be at greater risk of smoking-induced lung function impairment, more severe dyspnea, and poorer health status for the same level of tobacco exposure. The degree to which these observations represent biologic, physiologic, or sociologic differences is not known. Nonsmokers with COPD are also more likely to be female. In addition, new evidence is emerging that men and women may be phenotypically different in their response to tobacco smoke, with men being more prone to an emphysematous phenotype and women an airway predominant phenotype. Inasmuch as COPD is a disease of inflammation, it is also possible that sexual dimorphism of the human immune response may also be responsible for gender differences in the disease. More data are still needed on what the implications of these findings are on therapy. In this clinical commentary, we present current knowledge regarding how gender influences the epidemiology, diagnosis, and presentation of COPD in addition to physiologic and psychologic impairments and we attempt to offer insight into why these differences might exist and how this may influence therapeutic management.
Project description:COPD, characterized by long-term poorly irreversible airway limitation and persistent respiratory symptoms, has resulted in enormous challenges to human health worldwide, with increasing rates of prevalence, death, and disability. Although its origin was thought to be in the interactions of genetic with environmental factors, the effects of environmental factors on the disease during different life stages remain little known. Without clear mechanisms and radical cure for it, early screening and prevention of COPD seem to be important. In this review, we will discuss the etiologic origins for poor lung function and COPD caused by specific adverse effects during corresponding life stages, as well as try to find new insights and potential prevention strategies for this disease.
Project description:Diaphragm muscles in Chronic Obstructive Pulmonary Disease (COPD) patients undergo an adaptive fast to slow transformation that includes cellular adaptations. This project studies the signaling mechanisms responsible for this transformation. Keywords: other
Project description:Chronic obstructive pulmonary disease (COPD) is a major health problem which had not received the attention commensurate with the magnitude of its global burden. This is finally changing with the help of a vibrant community of health-care professionals, public officials, and academic researchers. Advances in characterization of the disease, treatment options, imaging modalities, and better understanding of the comorbidities promise to revolutionize how the disease is managed. COPD should no longer augur despair among physicians and patients.
Project description:Investigation of whole genome gene expression level changes of the dynamic gene profiling of peripheral blood mononuclear cells (PBMCs) from patients with AECOPD) on day1, 3 and 10, compared to the normal people and stable COPD patients. A five chip study using total RNA recovered from Peripheral Blood Mononuclear Cell of Peripheral Blood.Evaluating the dynamic gene profiling of peripheral blood mononuclear cells (PBMCs) from patients with AECOPD) on day1, 3 and 10 after the hospital admission, to compared with healthy controls or patients with stable COPD. Slides were scanned at 5 μm/pixel resolution using an Axon GenePix 4000B scanner (Molecular Devices Corporation) piloted by GenePix Pro 6.0 software (Axon). Scanned images (TIFF format) were then imported into NimbleScan software (version 2.5) for grid alignment and expression data analysis. Expression data were normalized through quantile normalization and the Robust Multichip Average (RMA) algorithm included in the NimbleScan software. The Probe level (*_norm_RMA.pair) files and Gene level (*_RMA.calls) files were generated after normalization.
Project description:Investigation of whole genome gene expression level changes of the dynamic gene profiling of peripheral blood mononuclear cells (PBMCs) from patients with AECOPD) on day1, 3 and 10, compared to the normal people and stable COPD patients.
Project description:BackgroundChronic obstructive pulmonary disease (COPD) is a leading cause of death in adults that may have origins in early lung development. It is a complex disease, influenced by multiple factors including genetic variants and environmental factors. Maternal smoking during pregnancy may influence the risk for diseases during adulthood, potentially through epigenetic modifications including methylation.MethodsIn this work, we explore the fetal origins of COPD by utilizing lung DNA methylation marks associated with in utero smoke (IUS) exposure, and evaluate the network relationships between methylomic and transcriptomic signatures associated with adult lung tissue from former smokers with and without COPD. To identify potential pathobiological mechanisms that may link fetal lung, smoke exposure and adult lung disease, we study the interactions (physical and functional) of identified genes using protein-protein interaction networks.ResultsWe build IUS-exposure and COPD modules, which identify connected subnetworks linking fetal lung smoke exposure to adult COPD. Studying the relationships and connectivity among the different modules for fetal smoke exposure and adult COPD, we identify enriched pathways, including the AGE-RAGE and focal adhesion pathways.ConclusionsThe modules identified in our analysis add new and potentially important insights to understanding the early life molecular perturbations related to the pathogenesis of COPD. We identify AGE-RAGE and focal adhesion as two biologically plausible pathways that may reveal lung developmental contributions to COPD. We were not only able to identify meaningful modules but were also able to study interconnections between smoke exposure and lung disease, augmenting our knowledge about the fetal origins of COPD.
Project description:The main risk factor for chronic obstructive pulmonary disease (COPD) is active smoking. However, a considerable amount of people with COPD never smoked, and increasing evidence suggests that adult lung disease can have its origins in prenatal and early life. This article reviews some of the factors that can potentially affect lung development and lung function trajectories throughout the lifespan from genetics and prematurity to respiratory tract infections and childhood asthma. Maternal smoking and air pollution exposure were also analyzed among the environmental factors. The adoption of preventive strategies to avoid these risk factors since the prenatal period may be crucial to prevent, delay the onset or modify the progression of COPD lung disease throughout life.