Unknown

Dataset Information

0

Chemokine receptor CXCR7 non-cell-autonomously controls pontine neuronal migration and nucleus formation.


ABSTRACT: Long distance tangential migration transports neurons from their birth places to distant destinations to be incorporated into neuronal circuits. How neuronal migration is guided during these long journeys is still not fully understood. We address this issue by studying the migration of pontine nucleus (PN) neurons in the mouse hindbrain. PN neurons migrate from the lower rhombic lip first anteriorly and then turn ventrally near the trigeminal ganglion root towards the anterior ventral hindbrain. Previously we showed that in mouse depleted of chemokine receptor CXCR4 or its ligand CXCL12, PN neurons make their anterior-to-ventral turn at posteriorized positions. However, the mechanism that spatiotemporally controls the anterior-to-ventral turning is still unclear. Furthermore, the role of CXCR7, the atypical receptor of CXCL12, in pontine migration has yet to be examined. Here, we find that the PN is elongated in Cxcr7 knockout due to a broadened anterior-to-ventral turning positions. Cxcr7 is not expressed in migrating PN neurons en route to their destinations, but is strongly expressed in the pial meninges. Neuroepithelium-specific knockout of Cxcr7 does not recapitulate the PN phenotype in Cxcr7 knockout, suggesting that CXCR7 acts non-cell-autonomously possibly from the pial meninges. We show further that CXCR7 regulates pontine migration by modulating CXCL12 protein levels.

SUBMITTER: Zhu Y 

PROVIDER: S-EPMC7367352 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Chemokine receptor CXCR7 non-cell-autonomously controls pontine neuronal migration and nucleus formation.

Zhu Yan Y   Hirata Tatsumi T   Mackay Fabienne F   Murakami Fujio F  

Scientific reports 20200716 1


Long distance tangential migration transports neurons from their birth places to distant destinations to be incorporated into neuronal circuits. How neuronal migration is guided during these long journeys is still not fully understood. We address this issue by studying the migration of pontine nucleus (PN) neurons in the mouse hindbrain. PN neurons migrate from the lower rhombic lip first anteriorly and then turn ventrally near the trigeminal ganglion root towards the anterior ventral hindbrain.  ...[more]

Similar Datasets

| S-EPMC4479597 | biostudies-literature
| S-EPMC2277323 | biostudies-literature
| S-EPMC7837322 | biostudies-literature
| S-EPMC2770598 | biostudies-literature
| S-EPMC7210779 | biostudies-literature
| S-EPMC7042730 | biostudies-literature
| S-EPMC7198625 | biostudies-literature
| S-EPMC6110151 | biostudies-literature
| S-EPMC3311620 | biostudies-literature
| S-EPMC5551701 | biostudies-literature