Project description:IntroductionRecent studies have shown that neuroimaging markers of cerebral small vessel disease can also regress over time. We investigated the cognitive consequences of regression of small vessel disease markers.Patients and methodsTwo hundred and seventy-six participants of the RUNDMC study underwent neuroimaging and cognitive assessments at three time-points over 8.7 years. We semi-automatically assessed white matter hyperintensities volumes and manually rated lacunes and microbleeds. We analysed differences in cognitive decline and accompanying brain atrophy between participants with regression, progression and stable small vessel disease by analysis of variance.ResultsFifty-six participants (20.3%) showed regression of small vessel disease markers: 31 (11.2%) white matter hyperintensities regression, 10 (3.6%) vanishing lacunes and 27 (9.8%) vanishing microbleeds. Participants with regression showed a decline in overall cognition, memory, psychomotor speed and executive function similar to stable small vessel disease. Participants with small vessel disease progression showed more cognitive decline compared with stable small vessel disease (p < 0.001 for cognitive index and memory; p < 0.01 for executive function), although significance disappeared after adjusting for age and sex. Loss of total brain, gray matter and white matter volume did not differ between participants with small vessel disease regression and stable small vessel disease, while participants with small vessel disease progression showed more volume loss of total brain and gray matter compared to those with stable small vessel disease (p < 0.05), although significance disappeared after adjustments.DiscussionRegression of small vessel disease markers was associated with similar cognitive decline compared to stable small vessel disease and did not accompany brain atrophy, suggesting that small vessel disease regression follows a relatively benign clinical course. Future studies are required to validate these findings and to assess the role of vascular risk factor control on small vessel disease regression and possible recovery of clinical symptoms.ConclusionOur findings of comparable cognitive decline between participants with regression and stable small vessel disease might suggest that small vessel disease regression has a relative benign cognitive outcome.
Project description:Cerebral small-vessel damage manifests as white matter hyperintensities and cerebral atrophy on brain MRI and is associated with aging, cognitive decline and dementia. We sought to examine the interrelationship of these imaging biomarkers and the influence of hypertension in older individuals. We used a multivariate spatial covariance neuroimaging technique to localize the effects of white matter lesion load on regional gray matter volume and assessed the role of blood pressure control, age and education on this relationship. Using a case-control design matching for age, gender, and educational attainment we selected 64 participants with normal blood pressure, controlled hypertension or uncontrolled hypertension from the Northern Manhattan Study cohort. We applied gray matter voxel-based morphometry with the scaled subprofile model to (1) identify regional covariance patterns of gray matter volume differences associated with white matter lesion load, (2) compare this relationship across blood pressure groups, and (3) relate it to cognitive performance. In this group of participants aged 60-86 years, we identified a pattern of reduced gray matter volume associated with white matter lesion load in bilateral temporal-parietal regions with relative preservation of volume in the basal forebrain, thalami and cingulate cortex. This pattern was expressed most in the uncontrolled hypertension group and least in the normotensives, but was also more evident in older and more educated individuals. Expression of this pattern was associated with worse performance in executive function and memory. In summary, white matter lesions from small-vessel disease are associated with a regional pattern of gray matter atrophy that is mitigated by blood pressure control, exacerbated by aging, and associated with cognitive performance.
Project description:BackgroundTo examine the effect of frailty on cognitive decline independent of cerebral small vessel disease (cSVD) and brain atrophy, and whether associations between neuropathology and cognition differed depending on frailty status.MethodsThe Tasmanian Study of Cognition and Gait was a population-based longitudinal cohort study with data collected at 3 phases from 2005 to 2012. Participants aged 60-85 were randomly selected from the electoral roll. Various data were used to operationalize a 36-item frailty index (FI) at baseline. Brain MRI was undertaken to obtain baseline measures of neuropathology. A neuropsychological battery was used to assess cognition at each time point. Generalized linear mixed models were used to examine the effect of frailty and MRI measures on cognition over time. The associations between MRI measures and cognition were explored after stratifying the sample by baseline frailty status. All analyses were adjusted for age, sex, and education.ResultsA total of 385 participants were included at baseline. The mean age was 72.5 years (standard deviation [SD] 7.0), 44% were female (n = 171). In fully adjusted linear mixed models, frailty (FI × time β -0.001, 95% confidence interval [CI] -0.003, -0.001, p = .03) was associated with decline in global cognition, independent of brain atrophy, and cSVD. The association between cSVD and global cognition was significant only in those with low levels of frailty (p = .03).ConclusionThese findings suggest that frailty is an important factor in early cognitive dysfunction, and measuring frailty may prove useful to help identify future risk of cognitive decline.
Project description:In the elderly, brain structural deficits and gait disturbances due to cerebral small vessel disease (CSVD) have been well demonstrated. The relationships among CSVD, brain atrophy, and motor impairment, however, are far from conclusive. Particularly, the effect of CSVD on subcortical nuclear atrophy, motor performance of upper extremities, and associating patterns between brain atrophy and motor impairment remains largely unknown. To address these gaps, this study recruited 770 community-dwelling subjects (35-82 years of age), including both CSVD and non-CSVD individuals. For each subject, four motor tests involving upper and lower extremities were completed. High-resolution structural MRI was applied to extract gray matter (GM) volume, white matter volume, cortical thickness, surface area, and subcortical nuclear (caudate, putamen, pallidum, and thalamus) volumes. The results showed worse motor performance of lower extremities but relatively preserved performance of upper extremities in the CSVD group. Intriguingly, there was a significant association between the worse performance of upper extremities and atrophy of whole-brain GM and pallidum in the CSVD group but not in the non-CSVD group. In addition, mediation analysis confirmed a functional CSVD-to-"brain atrophy"-to-"motor impairment" pathway, that is, a mediating role of thalamic atrophy in the CSVD effect on walking speed in the elderly, indicating that CSVD impairs walking performance through damaging the integrity of the thalamus in aging populations. These findings provide important insight into the functional consequences of CSVD and highlight the importance of evaluating upper extremities functions and exploring their brain mechanisms in CSVD populations during aging.
Project description:ObjectiveOur aim was to investigate the relationship of carotid structure and function with MRI markers of cerebral ischemic small-vessel disease.MethodsThe study comprised 1,800 participants (aged 72.5 ± 4.1 years, 59.4% women) from the 3C-Dijon Study, a population-based, prospective cohort study, who had undergone quantitative brain MRI and carotid ultrasound. We used multivariable logistic and linear regression adjusted for age, sex, and vascular risk factors.ResultsPresence of carotid plaque and increasing carotid lumen diameter (but not common carotid artery intima-media thickness) were associated with higher prevalence of lacunar infarcts: odds ratio (OR) = 1.60 (95% confidence interval [CI]: 1.09-2.35), p = 0.02 and OR = 1.24 (95% CI: 1.02-1.50), p = 0.03 (by SD increase). Carotid plaque was also associated with large white matter hyperintensity volume (WMHV) (age-specific top quartile of WMHV distribution): OR = 1.32 (95% CI: 1.04-1.67), p = 0.02, independently of vascular risk factors. Increasing Young elastic modulus and higher circumferential wall stress, reflecting augmented carotid stiffness, were associated with increasing WMHV (effect estimate [β] ± standard error: 0.0003 ± 0.0001, p = 0.024; β ± standard error: 0.005 ± 0.002, p = 0.008). Large WMHV was also associated with increasing Young elastic modulus (OR = 1.22 [95% CI: 1.04-1.42], p = 0.01) and with decreasing distensibility coefficient (OR = 0.83 [95% CI: 0.69-0.99], p = 0.04), independently of vascular risk factors. Associations of carotid lumen diameter with lacunar infarcts and of carotid stiffness markers with WMHV were independent of carotid plaque.ConclusionsIn addition to and independently of carotid plaque, increasing carotid lumen diameter and markers of carotid stiffness were associated with increasing prevalence of lacunar infarcts and increasing WMHV, respectively.
Project description:Several studies have suggested a relationship between SARS-CoV-2 infection and diabetes. This study examined the consequences of infection of human pancreatic islets with SARS-CoV-2 virus. This GEO submission contains the raw and processed data from single-cell RNA sequencing (scRNAseq) experiments evaluating the tropism of SARS-CoV-2 in pancreatic islets and transcriptional changes induced by infection of these cells. Overall we observed limited infection of pancreatic islets (0.2 - 3.4% of all cells infected per donor) and identified multiple pancreatic cell types as targets of infection; due to the preponderance of major endocrine cell populations in our islet cell preparations, downstream analyses were primarily focused on alpha and beta cells. Within beta cells we identified an upregulation of interferon stimulated genes in both infected and bystander cells as well as an NFκB mediated genes in infected cells only. Within alpha cells we detected a non-specific downregulation of a large number of host genes in infected cells.
Project description:A focus on novel, confirmatory, and statistically significant results leads to substantial bias in the scientific literature. One type of bias, known as "p-hacking," occurs when researchers collect or select data or statistical analyses until nonsignificant results become significant. Here, we use text-mining to demonstrate that p-hacking is widespread throughout science. We then illustrate how one can test for p-hacking when performing a meta-analysis and show that, while p-hacking is probably common, its effect seems to be weak relative to the real effect sizes being measured. This result suggests that p-hacking probably does not drastically alter scientific consensuses drawn from meta-analyses.
Project description:Cerebral small vessel disease (SVD) is an important cause of stroke and cognitive impairment among the elderly and is a more frequent cause of stroke in Asia than in the US or Europe. Although traditional risk factors such as hypertension or diabetes mellitus are important in the development of cerebral SVD, the exact pathogenesis is still uncertain. Both, twin and family history studies suggest heritability of sporadic cerebral SVD, while the candidate gene study and the genome-wide association study (GWAS) are mainly used in genetic research. Robust associations between the candidate genes and occurrence of various features of sporadic cerebral SVD, such as lacunar infarction, intracerebral hemorrhage, or white matter hyperintensities, have not yet been elucidated. GWAS, a relatively new technique, overcomes several shortcomings of previous genetic techniques, enabling the detection of several important genetic loci associated with cerebral SVD. In addition to the more common, sporadic cerebral SVD, several single-gene disorders causing cerebral SVD have been identified. The number of reported cases is increasing as the clinical features become clear and diagnostic examinations are more readily available. These include cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy, COL4A1-related cerebral SVD, autosomal dominant retinal vasculopathy with cerebral leukodystrophy, and Fabry disease. These rare single-gene disorders are expected to play a crucial role in our understanding of cerebral SVD pathogenesis by providing animal models for the identification of cellular, molecular, and biochemical changes underlying cerebral small vessel damage.
Project description:BackgroundWhile hypercholesterolemia plays a causative role for the development of ischemic stroke in large vessels, its significance for cerebral small vessel disease (CSVD) remains unclear. We thus aimed to understand the detailed relationship between hypercholesterolemia and CSVD using the well described Ldlr-/- mouse model.MethodsWe used Ldlr-/- mice (n = 16) and wild-type (WT) mice (n = 15) at the age of 6 and 12 months. Ldlr-/- mice develop high plasma cholesterol levels following a high fat diet. We analyzed cerebral capillaries and arterioles for intravascular erythrocyte accumulations, thrombotic vessel occlusions, blood-brain barrier (BBB) dysfunction and microbleeds.ResultsWe found a significant increase in the number of erythrocyte stases in 6 months old Ldlr-/- mice compared to all other groups (P < 0.05). Ldlr-/- animals aged 12 months showed the highest number of thrombotic occlusions while in WT animals hardly any occlusions could be observed (P < 0.001). Compared to WT mice, Ldlr-/- mice did not display significant gray matter BBB breakdown. Microhemorrhages were observed in one Ldlr-/- mouse that was 6 months old. Results did not differ when considering subcortical and cortical regions.ConclusionsIn Ldlr-/- mice, hypercholesterolemia is related to a thrombotic CSVD phenotype, which is different from hypertension-related CSVD that associates with a hemorrhagic CSVD phenotype. Our data demonstrate a relationship between hypercholesterolemia and the development of CSVD. Ldlr-/- mice appear to be an adequate animal model for research into CSVD.