Biotechnological synthesis of water-soluble food-grade polyphosphate with Saccharomyces cerevisiae.
Ontology highlight
ABSTRACT: Inorganic polyphosphate (polyP) is the polymer of phosphate. Water-soluble polyPs with average chain lengths of 2-40 P-subunits are widely used as food additives and are currently synthesized chemically. An environmentally friendly highly scalable process to biosynthesize water-soluble food-grade polyP in powder form (termed bio-polyP) is presented in this study. After incubation in a phosphate-free medium, generally regarded as safe wild-type baker's yeast (Saccharomyces cerevisiae) took up phosphate and intracellularly polymerized it into 26.5% polyP (as KPO3 , in cell dry weight). The cells were lyzed by freeze-thawing and gentle heat treatment (10 min, 70°C). Protein and nucleic acid were removed from the soluble cell components by precipitation with 50 mM HCl. Two chain length fractions (42 and 11P-subunits average polyP chain length, purity on a par with chemically produced polyP) were obtained by fractional polyP precipitation (Fraction 1 was precipitated with 100 mM NaCl and 0.15 vol ethanol, and Fraction 2 with 1 final vol ethanol), drying, and milling. The physicochemical properties of bio-polyP were analyzed with an enzyme assay, 31 P nuclear magnetic resonance spectroscopy, and polyacrylamide gel electrophoresis, among others. An envisaged application of the process is phosphate recycling from waste streams into high-value bio-polyP.
SUBMITTER: Christ JJ
PROVIDER: S-EPMC7375355 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA