Project description:BackgroundRisk factors for the development of severe COVID-19 disease and death have been widely reported across several studies. Knowledge about the determinants of severe disease and mortality in the Indian context can guide early clinical management.MethodsWe conducted a hospital-based case control study across nine sites in India to identify the determinants of severe and critical COVID-19 disease.FindingsWe identified age above 60 years, duration before admission >5 days, chronic kidney disease, leucocytosis, prothrombin time > 14 sec, serum ferritin >250 ng/mL, d-dimer >0.5 ng/mL, pro-calcitonin >0.15 μg/L, fibrin degradation products >5 μg/mL, C-reactive protein >5 mg/L, lactate dehydrogenase >150 U/L, interleukin-6 >25 pg/mL, NLR ≥3, and deranged liver function, renal function and serum electrolytes as significant factors associated with severe COVID-19 disease.InterpretationWe have identified a set of parameters that can help in characterising severe COVID-19 cases in India. These parameters are part of routinely available investigations within Indian hospital settings, both public and private. Study findings have the potential to inform clinical management protocols and identify patients at high risk of severe outcomes at an early stage.
Project description:Since the beginning of the SARS-CoV-2 pandemic, COVID-19 has appeared as a unique disease with unconventional tissue and systemic immune features. While COVID-19 severe forms share clinical and laboratory aspects with various pathologies such as hemophagocytic lymphohistiocytosis, sepsis or cytokine release syndrome, their exact nature remains unknown. This is severely impeding the ability to treat patients facing severe stages of the disease. To this aim, we performed an in-depth, single-cell RNA-seq analysis of more than 150.000 immune cells isolated from matched blood samples and broncho-alveolar lavage fluids of COVID-19 patients and healthy controls, and integrated it with clinical, immunological and functional ex vivo data. We unveiled an immune signature of disease severity that correlated with the accumulation of naïve lymphoid cells in the lung and an expansion and activation of myeloid cells in the periphery. Moreover, we demonstrated that myeloid-driven immune suppression is a hallmark of COVID-19 evolution and arginase 1 expression is significantly associated with monocyte immune regulatory features. Noteworthy, we found monocyte and neutro-phil immune suppression loss associated with fatal clinical outcome in severe patients. Additionally, our analysis discovered that the strongest association of the patients clinical outcome and immune phenotype is the lung T cell response. We found that patients with a robust CXCR6+ effector memory T cell response have better outcomes. This result is line with the rs11385942 COVID-19 risk allele, which is in proximity to the CXCR6 gene and suggest effector memory T cell are a primary feature in COVID-19 patients. By systemically quantifying the viral landscape in the lung of severe patients, we indeed identified Herpes-Simplex-Virus 1 (HSV-1) as a potential opportunistic virus in COVID-19 patients. Lastly, we observed an unexpectedly high SARS-CoV-2 viral load in an immuno-compromised patient, allowing us to study the SARS-CoV-2 in-vivo life cycle. The development of my-eloid dysfunctions and the impairment of lymphoid arm establish a condition of immune paralysis that supports secondary bacteria and virus infection and can progress to “immune silence” in patients facing death.
Project description:Information on the immunopathobiology of coronavirus disease 2019 (COVID-19) is rapidly increasing; however, there remains a need to identify immune features predictive of fatal outcome. This large-scale study characterized immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection using multidimensional flow cytometry, with the aim of identifying high-risk immune biomarkers. Holistic and unbiased analyses of 17 immune cell-types were conducted on 1,075 peripheral blood samples obtained from 868 COVID-19 patients and on samples from 24 patients presenting with non-SARS-CoV-2 infections and 36 healthy donors. Immune profiles of COVID-19 patients were significantly different from those of age-matched healthy donors but generally similar to those of patients with non-SARS-CoV-2 infections. Unsupervised clustering analysis revealed three immunotypes during SARS-CoV-2 infection; immunotype 1 (14% of patients) was characterized by significantly lower percentages of all immune cell-types except neutrophils and circulating plasma cells, and was significantly associated with severe disease. Reduced B-cell percentage was most strongly associated with risk of death. On multivariate analysis incorporating age and comorbidities, B-cell and non-classical monocyte percentages were independent prognostic factors for survival in training (n=513) and validation (n=355) cohorts. Therefore, reduced percentages of B-cells and non-classical monocytes are high-risk immune biomarkers for risk-stratification of COVID-19 patients.
Project description:COVID-19, the disease caused by SARS-CoV-2 infection, can assume a highly variable disease course, ranging from asymptomatic infection, which constitutes the majority of cases, to severe respiratory failure. This implies a diverse host immune response to SARS-CoV-2. However, the immunological underpinnings underlying these divergent disease courses remain elusive. We therefore set out to longitudinally characterize immune signatures of convalescent COVID-19 patients stratified according to their disease severity. Our unique convalescent COVID-19 cohort consists of 74 patients not confounded by comorbidities. This is the first study of which we are aware that excludes immune abrogations associated with non-SARS-CoV-2 related risk factors of disease severity. Patients were followed up and analyzed longitudinally (2, 4 and 6 weeks after infection) by high-dimensional flow cytometric profiling of peripheral blood mononuclear cells (PBMCs), in-depth serum analytics, and transcriptomics. Immune phenotypes were correlated to disease severity. Convalescence was overall associated with uniform immune signatures, but distinct immune signatures for mildly versus severely affected patients were detectable within a 2-week time window after infection.
Project description:Rationale: Up to date, the exploration of clinical features in severe COVID-19 patients were mostly from the same center in Wuhan, China. The clinical data in other centers is limited. This study aims to explore the feasible parameters which could be used in clinical practice to predict the prognosis in hospitalized patients with severe coronavirus disease-19 (COVID-19). Methods: In this case-control study, patients with severe COVID-19 in this newly established isolation center on admission between 27 January 2020 to 19 March 2020 were divided to discharge group and death event group. Clinical information was collected and analyzed for the following objectives: 1. Comparisons of basic characteristics between two groups; 2. Risk factors for death on admission using logistic regression; 3. Dynamic changes of radiographic and laboratory parameters between two groups in the course. Results: 124 patients with severe COVID-19 on admission were included and divided into discharge group (n=35) and death event group (n=89). Sex, SpO2, breath rate, diastolic pressure, neutrophil, lymphocyte, C-reactive protein (CRP), procalcitonin (PCT), lactate dehydrogenase (LDH), and D-dimer were significantly correlated with death events identified using bivariate logistic regression. Further multivariate logistic regression demonstrated a significant model fitting with C-index of 0.845 (p<0.001), in which SpO2≤89%, lymphocyte≤0.64×109/L, CRP>77.35mg/L, PCT>0.20μg/L, and LDH>481U/L were the independent risk factors with the ORs of 2.959, 4.015, 2.852, 3.554, and 3.185, respectively (p<0.04). In the course, persistently lower lymphocyte with higher levels of CRP, PCT, IL-6, neutrophil, LDH, D-dimer, cardiac troponin I (cTnI), brain natriuretic peptide (BNP), and increased CD4+/CD8+ T-lymphocyte ratio and were observed in death events group, while these parameters stayed stable or improved in discharge group. Conclusions: On admission, the levels of SpO2, lymphocyte, CRP, PCT, and LDH could predict the prognosis of severe COVID-19 patients. Systematic inflammation with induced cardiac dysfunction was likely a primary reason for death events in severe COVID-19 except for acute respiratory distress syndrome.
Project description:Single-cell RNA-sequencing reveals a shift from focused IFN alpha-driven signals in COVID-19 ICU patients who survive to broad pro-inflammatory responses in fatal COVID-19 – a feature not observed in severe influenza. We conclude that fatal COVID-19 infection is driven by uncoordinated inflammatory responses that drive a hierarchy of T cell activation, elements of which can serve as prognostic indicators and potential targets for immune intervention.
Project description:Liver injury is common in patients with COVID-19, but little is known about its clinical presentation and severity in the context of liver transplant. We describe a case of COVID-19 in a patient who underwent transplant 3 years ago for hepatocellular carcinoma. The patient came to clinic with symptoms of respiratory disease; pharyngeal swabs for severe acute respiratory syndrome coronavirus 2 were positive. His disease progressed rapidly from mild to critical illness and was complicated by several nosocomial infections and multiorgan failure. Despite multiple invasive procedures and rescue therapies, he died from the disease. The management of COVID-19 in the posttransplant setting presents complex challenges, emphasizing the importance of strict prevention strategies.
Project description:According to the World Health Organization, 98% of fatal dengue cases can be prevented; however, endemic countries such as Colombia have recorded higher case fatality rates during recent epidemics. We aimed to identify the predictors of mortality that allow risk stratification and timely intervention in patients with dengue. We conducted a hospital-based, case-control (1:2) study in two endemic areas of Colombia (2009-2015). Fatal cases were defined as having either 1) positive serological test (IgM or NS1), 2) positive virological test (RT-PCR or viral isolation), or 3) autopsy findings compatible with death from dengue. Controls (matched by state and year) were hospitalized nonfatal patients and had a positive serological or virological dengue test. Exposure data were extracted from medical records by trained staff. We used conditional logistic regression (adjusting for age, gender, disease's duration, and health-care provider) in the context of multiple imputation to estimate exposure to case-control associations. We evaluated 110 cases and 217 controls (mean age: 35.0 versus 18.9; disease's duration pre-admission: 4.9 versus 5.0 days). In multivariable analysis, retro-ocular pain (odds ratios [OR] = 0.23), nausea (OR = 0.29), and diarrhea (OR = 0.19) were less prevalent among fatal than nonfatal cases, whereas increased age (OR = 2.46 per 10 years), respiratory distress (OR = 16.3), impaired consciousness (OR = 15.9), jaundice (OR = 32.2), and increased heart rate (OR = 2.01 per 10 beats per minute) increased the likelihood of death (AUC: 0.97, 95% confidence interval: 0.96, 0.99). These results provide evidence that features of severe dengue are associated with higher mortality, which strengthens the recommendations related to triaging patients in dengue-endemic areas.
Project description:BackgroundNovel coronavirus disease 2019 (COVID-19) has become a worldwide pandemic and precise fatality data by age group is needed urgently. This study to delineate the clinical characteristics and outcome of COVID-19 patients aged ≥75 years and identify the risk factors of in-hospital death.MethodsA total of 141 consecutive patients aged ≥75 years who were admitted to the hospital between 12th and 19th February 2020. In-hospital death, clinical characteristics and laboratory findings on admission were obtained from medical records. The final follow-up observation was on the 31st March 2020.ResultsThe median age was 81 years (84 female, 59.6%). Thirty-eight (27%) patients were classified as severe or critical cases. 18 (12.8%) patients had died in hospital and the remaining 123 were discharged. Patients who died were more likely to present with fever (38.9% vs. 7.3%); low percutaneous oxygen saturation (SpO2) (55.6% vs. 7.3%); reduced lymphocytes (72.2% vs. 35.8%) and platelets (27.8% vs. 4.1%); and increased D-dimer (94.4% vs. 42.3%), creatinine (50.0% vs. 22.0%), lactic dehydrogenase (LDH) (77.8% vs. 30.1%), high sensitivity troponin I (hs-TnI) (72.2% vs. 14.6%), and N-terminal pro-brain natriuretic peptide (NT-proBNP) (72.2% vs. 6.5%; all P < 0.05) than patients who recovered. Male sex (odds ratio [OR] = 13.1, 95% confidence interval [CI] 1.1 to 160.1, P = 0.044), body temperature > 37.3 °C (OR = 80.5, 95% CI 4.6 to 1407.6, P = 0.003), SpO2 ≤ 90% (OR = 70.1, 95% CI 4.6 to 1060.4, P = 0.002), and NT-proBNP> 1800 ng/L (OR = 273.5, 95% CI 14.7 to 5104.8, P < 0.0001) were independent risk factors of in-hospital death.ConclusionsIn-hospital fatality among elderly COVID-19 patients can be estimated by sex and on-admission measurements of body temperature, SpO2, and NT-proBNP.
Project description:BACKGROUND:Coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly become pandemic, with substantial mortality. OBJECTIVE:To evaluate the pathologic changes of organ systems and the clinicopathologic basis for severe and fatal outcomes. DESIGN:Prospective autopsy study. SETTING:Single pathology department. PARTICIPANTS:11 deceased patients with COVID-19 (10 of whom were selected at random for autopsy). MEASUREMENTS:Systematic macroscopic, histopathologic, and viral analysis (SARS-CoV-2 on real-time polymerase chain reaction assay), with correlation of pathologic and clinical features, including comorbidities, comedication, and laboratory values. RESULTS:Patients' age ranged from 66 to 91 years (mean, 80.5 years; 8 men, 3 women). Ten of the 11 patients received prophylactic anticoagulant therapy; venous thromboembolism was not clinically suspected antemortem in any of the patients. Both lungs showed various stages of diffuse alveolar damage (DAD), including edema, hyaline membranes, and proliferation of pneumocytes and fibroblasts. Thrombosis of small and mid-sized pulmonary arteries was found in various degrees in all 11 patients and was associated with infarction in 8 patients and bronchopneumonia in 6 patients. Kupffer cell proliferation was seen in all patients, and chronic hepatic congestion in 8 patients. Other changes in the liver included hepatic steatosis, portal fibrosis, lymphocytic infiltrates and ductular proliferation, lobular cholestasis, and acute liver cell necrosis, together with central vein thrombosis. Additional frequent findings included renal proximal tubular injury, focal pancreatitis, adrenocortical hyperplasia, and lymphocyte depletion of spleen and lymph nodes. Viral RNA was detectable in pharyngeal, bronchial, and colonic mucosa but not bile. LIMITATION:The sample was small. CONCLUSION:COVID-19 predominantly involves the lungs, causing DAD and leading to acute respiratory insufficiency. Death may be caused by the thrombosis observed in segmental and subsegmental pulmonary arterial vessels despite the use of prophylactic anticoagulation. Studies are needed to further understand the thrombotic complications of COVID-19, together with the roles for strict thrombosis prophylaxis, laboratory and imaging studies, and early anticoagulant therapy for suspected pulmonary arterial thrombosis or thromboembolism. PRIMARY FUNDING SOURCE:None.