Ontology highlight
ABSTRACT:
SUBMITTER: Stanley N
PROVIDER: S-EPMC7385162 | biostudies-literature | 2020 Jul
REPOSITORIES: biostudies-literature
Stanley Natalie N Stelzer Ina A IA Tsai Amy S AS Fallahzadeh Ramin R Ganio Edward E Becker Martin M Phongpreecha Thanaphong T Nassar Huda H Ghaemi Sajjad S Maric Ivana I Culos Anthony A Chang Alan L AL Xenochristou Maria M Han Xiaoyuan X Espinosa Camilo C Rumer Kristen K Peterson Laura L Verdonk Franck F Gaudilliere Dyani D Tsai Eileen E Feyaerts Dorien D Einhaus Jakob J Ando Kazuo K Wong Ronald J RJ Obermoser Gerlinde G Shaw Gary M GM Stevenson David K DK Angst Martin S MS Gaudilliere Brice B Aghaeepour Nima N
Nature communications 20200727 1
High-throughput single-cell analysis technologies produce an abundance of data that is critical for profiling the heterogeneity of cellular systems. We introduce VoPo (https://github.com/stanleyn/VoPo), a machine learning algorithm for predictive modeling and comprehensive visualization of the heterogeneity captured in large single-cell datasets. In three mass cytometry datasets, with the largest measuring hundreds of millions of cells over hundreds of samples, VoPo defines phenotypically and fu ...[more]