Project description:Although the strain causing cutaneous leishmaniasis (CL) in Sri Lanka was first identified in 2003, the strain causing visceral leishmaniasis (VL) has not yet been identified. We report the first isoenzyme typing of a strain causing VL in Sri Lanka at an early stage of emergence of VL in the country. The parasite was isolated from a 57-year-old civil soldier who had been in the jungle in the Vavuniya district in the Northern Province of Sri Lanka for a period of nearly 6 months immediately before the onset of symptoms. Multilocus enzyme electrophoresis (MLEE) revealed that the strain is Leishmania donovani zymodeme MON-37, the zymodeme which was previously identified from the CL patients in the country. The MLEE analysis was confirmed by sequencing the gene encoding the 6-phosphogluconate dehydrogenase isoenzyme. This is an instance of the same Leishmania zymodeme associated with both dermotropism and viscerotropism in the same geographic region. Further investigations into the genetic structure and identification of virulence factors in the parasite and immune factors in the host are required to understand the factors responsible for different tropism shown by the same zymodeme MON-37 L. donovani from Sri Lanka.
Project description:We sequenced Leishmania donovani genomes in blood samples collected in emerging foci of visceral leishmaniasis in western Nepal. We detected lineages very different from the preelimination main parasite population, including a new lineage and a rare one previously reported in eastern Nepal. Our findings underscore the need for genomic surveillance.
Project description:There is increasing interest in the role of asymptomatic infection in transmission of Visceral Leishmaniasis (VL). We studied the individual, household and environmental factors associated with asymptomatic Leishmania donovani infected individuals and VL. 7,538 individuals living in VL endemic villages in India and Nepal were divided into three mutually exclusive groups based on their VL history and Direct Agglutination Test (DAT) results in yearly serosurveys over a two-year period. The groups were (1) VL cases, (2) asymptomatically infected individuals (seroconverters) and (3) seronegative individuals. VL cases and seroconverters were compared to seronegative individuals in mixed logistic regression models. The risk of seroconversion and disease was significantly increased in individuals aged 14 to 24 years old and by the presence of other DAT-positive, asymptomatically infected individuals and VL cases in the house. The risk of seroconversion was higher in Indian than in Nepalese villages and it increased significantly with age, but not so for VL. This study demonstrates that, when risk factors for leishmanial infection and VL disease are evaluated in the same population, epidemiological determinants for asymptomatic infection and VL are largely similar.
Project description:Hemophagocytosis is a phenomenon in which macrophages phagocytose blood cells. There are reports on up-regulated hemophagocytosis in patients with infectious diseases including typhoid fever, tuberculosis, influenza and visceral leishmaniasis (VL). However, mechanisms of infection-associated hemophagocytosis remained elusive due to a lack of appropriate animal models. Here, we have established a mouse model of VL with hemophagocytosis. At 24 weeks after infection with 1 x 10(7) Leishmania donovani promastigotes, BALB/cA mice exhibited splenomegaly with an average tissue weight per body weight of 2.96%. In the tissues, 28.6% of macrophages contained phagocytosed erythrocytes. All of the hemophagocytosing macrophages were parasitized by L. donovani, and higher levels of hemophagocytosis was observed in heavily infected cells. Furthermore, more than half of these hemophagocytes had two or more macrophage-derived nuclei, whereas only 15.0% of splenic macrophages were bi- or multi-nuclear. These results suggest that direct infection by L. donovani causes hyper-activation of host macrophages to engulf blood cells. To our knowledge, this is the first report on hemophagocytosis in experimental Leishmania infections and may be useful for further understanding of the pathogenesis.
Project description:Visceral leishmaniasis is associated with hepato-splenomegaly and altered immune and hematological parameters in both preclinical animal models and humans. We studied mouse experimental visceral leishmaniasis caused by Leishmania infantum and Leishmania donovani in BALB/c mice using dual RNA-seq to investigate the transcriptional response of host and parasite in liver and spleen. We identified only 4 species-specific parasite expressed genes (SSPEGs; log2FC >1, FDR <0.05) in the infected spleen, and none in the infected liver. For the host transcriptome, we found 789 differentially expressed genes (DEGs; log2FC >1, FDR <0.05) in the spleen that were common to both infections, with IFNγ signaling and complement and coagulation cascade pathways highly enriched, and an additional 286 and 186 DEGs that were selective to L. donovani and L. infantum infection, respectively. Among those, there were network interactions between genes of amino acid metabolism and PPAR signaling in L. donovani infection and increased IL1β and positive regulation of fatty acid transport in L. infantum infection, although no pathway enrichment was observed. In the liver, there were 1,939 DEGs in mice infected with either L. infantum or L. donovani in comparison to uninfected mice, and the most enriched pathways were IFNγ signaling, neutrophil mediated immunity, complement and coagulation, cytokine-chemokine responses, and hemostasis. Additionally, 221 DEGs were selective in L. donovani and 429 DEGs in L. infantum infections. These data show that the host response for these two visceral leishmaniasis infection models is broadly similar, and ∼10% of host DEGs vary in infections with either parasite species. IMPORTANCE Visceral leishmaniasis (VL) is caused by two species of Leishmania parasites, L. donovani in the Old World and L. infantum in the New World and countries bordering the Mediterranean. Although cardinal features such as hepato-splenomegaly and alterations in blood and immune function are evident, clinical presentation may vary by geography, with for example severe bleeding often associated with VL in Brazil. Although animal models of both L. donovani and L. infantum have been widely used to study disease pathogenesis, a direct side-by-side comparison of how these parasites species impact the infected host and/or how they might respond to the stresses of mammalian infection has not been previously reported. Identifying common and distinct pathways to pathogenesis will be important to ensure that new therapeutic or prophylactic approaches will be applicable across all forms of VL.
Project description:FIve 6/8 week old female BALB/c mice were infected with the LV9 L. donovani strain,five mice were infected with the L. infantum NCL strain, five were uninfected, and spleen and liver were taken from mice at day 36 post infection. These tissues were then used to prepare for RNAseq
Project description:Visceral leishmaniasis (VL) is one of the most important parasitic diseases with approximately 350 million people at risk. Due to the non availability of an ideal drug, development of a safe, effective, and affordable vaccine could be a solution for control and prevention of this disease. In this study, a potential Th1 stimulatory protein- Triose phosphate isomerase (TPI), a glycolytic enzyme, identified through proteomics from a fraction of Leishmania donovani soluble antigen ranging from 89.9-97.1 kDa, was assessed for its potential as a suitable vaccine candidate. The protein- L. donovani TPI (LdTPI) was cloned, expressed and purified which exhibited the homology of 99% with L. infantum TPI. The rLdTPI was further evaluated for its immunogenicity by lymphoproliferative response (LTT), nitric oxide (NO) production and estimation of cytokines in cured Leishmania patients/hamster. It elicited strong LTT response in cured patients as well as NO production in cured hamsters and stimulated remarkable Th1-type cellular responses including IFN-ã and IL-12 with extremely lower level of IL-10 in Leishmania-infected cured/exposed patients PBMCs in vitro. Vaccination with LdTPI-DNA construct protected naive golden hamsters from virulent L. donovani challenge unambiguously (?90%). The vaccinated hamsters demonstrated a surge in IFN-ã, TNF-á and IL-12 levels but extreme down-regulation of IL-10 and IL-4 along with profound delayed type hypersensitivity and increased levels of Leishmania-specific IgG2 antibody. Thus, the results are suggestive of the protein having the potential of a strong candidate vaccine.
Project description:We report the first case of visceral leishmaniasis (VL) caused by Leishmania martiniquensis in the Caribbean, which until now, was known only to cause cutaneous leishmaniasis. The disease presented with fatigue, anemia, and hepatosplenomegaly in a 61-year-old man with human immunodeficiency virus (HIV) infection who was receiving antiretroviral therapy. Diagnosis was made by bone marrow biopsy. VL is life-threatening, and its emergence in the Caribbean is of concern.
Project description:BackgroundLeishmaniasis is a common neglected tropical disease in Ethiopia. Visceral leishmaniasis (VL) caused by Leishmania donovani presents in the lowlands, while cutaneous leishmaniasis (CL) affects people living in the highlands. Although CL is described as being caused by Leishmania aethiopica, there is also evidence of L. tropica and L. major isolated from a patient, sand flies and potential reservoirs. Information on species causing CL in Ethiopia is patchy, and no nation-wide study has ever been done. Understanding which species are causing CL in Ethiopia can have important implications for patient management and disease prevention.MethodsWe analyzed stored routine samples and biobanked DNA isolates from previously conducted studies of CL patients from different centers in the north, center and south of Ethiopia. Species typing was performed using ITS-1 PCR with high-resolution melt (HRM) analysis, followed by HSP70 amplicon sequencing on a selection of the samples. Additionally, sociodemographic, clinical and laboratory data of patients were analyzed.ResultsOf the 226 CL samples collected, the Leishmania species could be determined for 105 (45.5%). Leishmania aethiopica was identified in 101 (96.2%) samples from across the country. In four samples originating from Amhara region, northwestern Ethiopia, L. donovani was identified by ITS-1 HRM PCR, of which two were confirmed with HSP70 sequences. While none of these four patients had symptoms of VL, two originated from known VL endemic areas.ConclusionsThe majority of CL was caused by L. aethiopica, but CL due to L. tropica and L. major cannot be ruled out. Our study is the first to our knowledge to demonstrate CL patients caused by L. donovani in Ethiopia. This should spark future research to investigate where, how and to which extent such transmission takes place, how it differs genetically from L. donovani causing VL and whether such patients can be diagnosed and treated successfully with the currently available tools and drugs.
Project description:BackgroundVisceral Leishmaniasis (VL), a severe parasitic disease, could be fatal if diagnosis and treatment is delayed. Post kala-azar dermal leishmaniasis (PKDL), a skin related outcome, is a potential reservoir for the spread of VL. Diagnostic tests available for VL such as tissue aspiration are invasive and painful although they are capable of evaluating the treatment response. Serological tests although less invasive than tissue aspiration are incompetent to assess cure. Parasitological examination of slit-skin smear along with the clinical symptoms is routinely used for diagnosis of PKDL. Therefore, a noninvasive test with acceptable sensitivity and competency, additionally, to decide cure would be an asset in disease management and control.Methodology/principal findingsWe describe here, the development of antibody-capture ELISA and field adaptable dipstick test as noninvasive diagnostic tools for VL and PKDL and as a test of cure in VL treatment. Sensitivity and specificity of urine-ELISA were 97.94% (95/97) and 100% (75/75) respectively, for VL. Importantly, dipstick test demonstrated 100% sensitivity (97/97) and specificity (75/75) in VL diagnosis. Degree of agreement of the two methods with tissue aspiration was 98.83% (κ = 0.97) and 100% (κ = 1), for ELISA and dipstick test, respectively. Both the tests had 100% positivity for PKDL (14/14) cases. ELISA and dipstick test illustrated treatment efficacy in about 90% (16/18) VL cases when eventually turned negative after six months of treatment.Conclusions/significanceELISA and dipstick test found immensely effective for diagnosis of VL and PKDL through urine samples thus, may substitute the existing invasive diagnostics. Utility of these tests as indirect methods of monitoring parasite clearance can define infected versus cured. Urine-based dipstick test is simple, sensitive and above all noninvasive method that may help not only in active VL case detection but also to ascertain treatment response. It can therefore, be deployed widely for interventions in disease management of VL particularly in poor resource outskirts.