Project description:We report a case of a kidney transplant recipient who presented with acute kidney injury and nephrotic-range proteinuria in a context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Kidney biopsy revealed collapsing glomerulopathy. Droplet-based digital polymerase chain reaction did not detect the presence of SARS-CoV-2 RNA in the biopsy fragment, and the virus was barely detectable in plasma at the time of the biopsy. SARS-CoV-2 RNAemia peaked several days later, followed by a seroconversion despite the absence of circulating CD19-positive lymphocytes at admission due to rituximab-based treatment of antibody-mediated rejection 3 months earlier. Genotyping for the 2 risk alleles of the apolipoprotein L1 (APOL1) gene revealed that the donor carried the low-risk G0/G2 genotype. This case illustrates that coronavirus disease 2019 infection may promote a collapsing glomerulopathy in kidney allografts with a low-risk APOL1 genotype in the absence of detectable SARS-CoV-2 RNA in the kidney and that podocyte injury may precede SARS-CoV-2 RNAemia.
Project description:Recent case reports suggest that coronavirus disease 2019 (COVID-19) is associated with collapsing glomerulopathy in African Americans with apolipoprotein L1 gene (APOL1) risk alleles; however, it is unclear whether disease pathogenesis is similar to HIV-associated nephropathy. RNA sequencing analysis of a kidney biopsy specimen from a patient with COVID-19-associated collapsing glomerulopathy and APOL1 risk alleles (G1/G1) revealed similar levels of APOL1 and angiotensin-converting enzyme 2 (ACE2) messenger RNA transcripts as compared with 12 control kidney samples downloaded from the GTEx (Genotype-Tissue Expression) Portal. Whole-genome sequencing of the COVID-19-associated collapsing glomerulopathy kidney sample identified 4 indel gene variants, 3 of which are of unknown significance with respect to chronic kidney disease and/or focal segmental glomerulosclerosis. Molecular profiling of the kidney demonstrated activation of COVID-19-associated cell injury pathways such as inflammation and coagulation. Evidence for direct severe acute respiratory syndrome coronavirus 2 infection of kidney cells was lacking, which is consistent with the findings of several recent studies. Interestingly, immunostaining of kidney biopsy sections revealed increased expression of phospho-STAT3 (signal transducer and activator of transcription 3) in both COVID-19-associated collapsing glomerulopathy and HIV-associated nephropathy as compared with control kidney tissue. Importantly, interleukin 6-induced activation of STAT3 may be a targetable mechanism driving COVID-19-associated acute kidney injury.
Project description:Collapsing glomerulopathy is a histologically distinct variant of focal and segmental glomerulosclerosis that presents with heavy proteinuria and portends a poor prognosis. Collapsing glomerulopathy can be triggered by viral infections such as HIV or SARS-CoV-2. Transcriptional profiling of collapsing glomerulopathy lesions is difficult since only a few glomeruli may exhibit this histology within a kidney biopsy and the mechanisms driving this heterogeneity are unknown. Therefore, we used recently developed digital spatial profiling (DSP) technology which permits quantification of mRNA at the level of individual glomeruli. Using DSP, we profiled 1,852 transcripts in glomeruli isolated from formalin fixed paraffin embedded sections from HIV or SARS-CoV-2-infected patients with biopsy-confirmed collapsing glomerulopathy and used normal biopsy sections as controls. Even though glomeruli with collapsing features appeared histologically similar across both groups of patients by light microscopy, the increased resolution of DSP uncovered intra- and inter-patient heterogeneity in glomerular transcriptional profiles that were missed in early laser capture microdissection studies of pooled glomeruli. Focused validation using immunohistochemistry and RNA in situ hybridization showed good concordance with DSP results. Thus, DSP represents a powerful method to dissect transcriptional programs of pathologically discernible kidney lesions.
Project description:Background and objectivesMalaria, a potentially life-threatening disease, is the most prevalent endemic infectious disease worldwide. In the modern era, the spectrum of glomerular involvement observed in patients after malarial infections remains poorly described.Design, setting, participants, & measurementsWe therefore performed a retrospective multicenter study to assess the clinical, biologic, pathologic, and therapeutic characteristics of patients with glomerular disease demonstrated by kidney biopsy in France within 3 months of an acute malaria episode.ResultsWe identified 23 patients (12 men), all but 1 of African ancestry and including 10 patients with concomitant HIV infection. All of the imported cases were in French citizens living in France who had recently traveled back to France from an endemic area and developed malaria after their return to France. Eleven patients had to be admitted to an intensive care unit at presentation. Plasmodium falciparum was detected in 22 patients, and Plasmodium malariae was detected in 1 patient. Kidney biopsy was performed after the successful treatment of malaria, a mean of 24 days after initial presentation. At this time, all patients displayed AKI, requiring KRT in 12 patients. Nephrotic syndrome was diagnosed in 17 patients. Pathologic findings included FSGS in 21 patients and minimal change nephrotic syndrome in 2 patients. Among patients with FSGS, 18 had collapsing glomerulopathy (including 9 patients with HIV-associated nephropathy). In four patients, immunohistochemistry with an antibody targeting P. falciparum histidine-rich protein-2 demonstrated the presence of the malaria antigen in tubular cells but not in podocytes or parietal epithelial cells. An analysis of the apoL1 risk genotype showed that high-risk variants were present in all seven patients tested. After a mean follow-up of 23 months, eight patients required KRT (kidney transplantation in two patients), and mean eGFR for the other patients was 51 ml/min per 1.73 m2.ConclusionsIn patients of African ancestry, imported Plasmodium infection may be a new causal factor for secondary FSGS, particularly for collapsing glomerulopathy variants in an APOL1 high-risk variant background.
Project description:Galloway-Mowat syndrome (GMS) is an autosomal recessive disorder with a poor prognosis that was first defined as a triad of central nervous system involvement, hiatal hernia, and nephrotic syndrome. However, this syndrome is now known to have a heterogeneous clinical presentation. The nephrotic syndrome is steroid resistant and is responsible for the outcome. The combination of collapsing glomerulopathy and GMS is very rare. A 26-month-old boy presented with steroid-resistant nephrotic syndrome associated with neurologic findings, including microcephaly, psychomotor retardation, and nystagmus. Magnetic resonance imaging showed marked cerebral atrophy, optic atrophy, and hypomyelination. A renal biopsy was consistent with collapsing glomerulopathy. If collapsing glomerulopathy is associated with neurological abnormalities, especially with microcephaly, clinicians should consider GMS as a possible underlying cause.