Unknown

Dataset Information

0

Fabrication of fluorescent pH-responsive protein-textile composites.


ABSTRACT: Wearable pH sensors are useful tools in the healthcare and fitness industries, allowing consumers to access information related to their health in a convenient manner via the monitoring of body fluids. In this work, we tailored novel protein-textile composites to fluorescently respond to changing pH. To do so, we used amyloid curli fibers, a key component in the extracellular matrix of Escherichia coli, as genetic scaffold to fuse a pH-responsive fluorescent protein, pHuji. Engineered amyloids form macroscopic and environmentally resistant aggregates that we isolated to use as stand-alone hydrogel-based sensors, and that we trapped within textile matrices to create responsive bio-composites. We showed that these composites were mechanically robust and vapor-permeable, thus exhibiting favorable characteristics for wearable platforms. CsgA-pHuji fibers integrated in the textile allowed the final device to respond to pH changes and distinguish between alkaline and acidic solutions. We demonstrated that the resulting composites could sustain their fluorescence response over days, and that their sensing ability was reversible for at least 10 high/low pH cycles, highlighting their potential for continuous monitoring. Overall, we introduced a biosynthesized amyloid-based textile composite that could be used as biosensing patch for a variety of applications in the smart textile industry.

SUBMITTER: Saldanha DJ 

PROVIDER: S-EPMC7400762 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fabrication of fluorescent pH-responsive protein-textile composites.

Saldanha Dalia Jane DJ   Abdali Zahra Z   Modafferi Daniel D   Janfeshan Bita B   Dorval Courchesne Noémie-Manuelle NM  

Scientific reports 20200803 1


Wearable pH sensors are useful tools in the healthcare and fitness industries, allowing consumers to access information related to their health in a convenient manner via the monitoring of body fluids. In this work, we tailored novel protein-textile composites to fluorescently respond to changing pH. To do so, we used amyloid curli fibers, a key component in the extracellular matrix of Escherichia coli, as genetic scaffold to fuse a pH-responsive fluorescent protein, pHuji. Engineered amyloids f  ...[more]

Similar Datasets

| S-EPMC2923472 | biostudies-literature
| S-EPMC8621403 | biostudies-literature
| S-EPMC8272162 | biostudies-literature
| S-EPMC6987190 | biostudies-literature
| S-EPMC9633373 | biostudies-literature
| S-EPMC5133896 | biostudies-literature
| S-EPMC9090722 | biostudies-literature
| S-EPMC5740179 | biostudies-literature
| S-EPMC5998383 | biostudies-literature
| S-EPMC8796171 | biostudies-literature