Unknown

Dataset Information

0

Life span extension by glucose restriction is abrogated by methionine supplementation: Cross-talk between glucose and methionine and implication of methionine as a key regulator of life span.


ABSTRACT: Caloric restriction (CR) is known to extend life span across species; however, the molecular mechanisms are not well understood. We investigate the mechanism by which glucose restriction (GR) extends yeast replicative life span, by combining ribosome profiling and RNA-seq with microfluidic-based single-cell analysis. We discovered a cross-talk between glucose sensing and the regulation of intracellular methionine: GR down-regulated the transcription and translation of methionine biosynthetic enzymes and transporters, leading to a decreased intracellular methionine concentration; external supplementation of methionine cancels the life span extension by GR. Furthermore, genetic perturbations that decrease methionine synthesis/uptake extend life span. These observations suggest that intracellular methionine mediates the life span effects of various nutrient and genetic perturbations, and that the glucose-methionine cross-talk is a general mechanism for coordinating the nutrient status and the translation/growth of a cell. Our work also implicates proteasome as a downstream effector of the life span extension by GR.

SUBMITTER: Zou K 

PROVIDER: S-EPMC7406366 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC514491 | biostudies-literature
| S-EPMC4998187 | biostudies-literature
| S-EPMC1140680 | biostudies-literature
| S-EPMC3397320 | biostudies-literature
| S-EPMC2669710 | biostudies-literature
| S-EPMC4799504 | biostudies-literature
| S-EPMC3966075 | biostudies-other
| S-EPMC2719349 | biostudies-literature
| S-EPMC3100872 | biostudies-other
| S-EPMC2812037 | biostudies-literature