Development of a Dental Implantable Temperature Sensor for Real-Time Diagnosis of Infectious Disease.
Ontology highlight
ABSTRACT: Implantable sensors capable of real-time measurements are powerful tools to diagnose disease and maintain health by providing continuous or regular biometric monitoring. In this paper, we present a dental implantable temperature sensor that can send early warning signals in real time before the implant fails. Using a microfabrication process on a flexible polyimide film, we successfully fabricated a multi-channel temperature sensor that can be wrapped around a dental implant abutment wing. In addition, the feasibility, durability, and implantability of the sensor were investigated. First, high linearity and repeatability between electrical resistance and temperature confirmed the feasibility of the sensor with a temperature coefficient of resistance (TCR) value of 3.33 × 10-3/°C between 20 and 100 °C. Second, constant TCR values and robust optical images without damage validated sufficient thermal, chemical, and mechanical durability in the sensor's performance and structures. Lastly, the elastic response of the sensor's flexible substrate film to thermal and humidity variations, simulating in the oral environment, suggested its successful long-term implantability. Based on these findings, we have successfully developed a polymer-based flexible temperature sensor for dental implant systems.
SUBMITTER: Kim JJ
PROVIDER: S-EPMC7412512 | biostudies-literature | 2020 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA