Project description:Severe chronic anemia is an independent predictor of overt stroke, white matter damage, and cognitive dysfunction in the elderly. Severe anemia also predisposes to white matter strokes in young children, independent of the anemia subtype. We previously demonstrated symmetrically decreased white matter (WM) volumes in patients with sickle cell disease (SCD). In the current study, we investigated whether patients with non-sickle anemia also have lower WM volumes and cognitive dysfunction. Magnetic Resonance Imaging was performed on 52 clinically asymptomatic SCD patients (age?=?21.4 ± 7.7; F?=?27, M?=?25; hemoglobin = 9.6 ± 1.6 g/dL), 26 non-sickle anemic patients (age?=?23.9 ± 7.9; F?=?14, M?=?12; hemoglobin?=?10.8 ± 2.5 g/dL) and 40 control subjects (age?=?27.7 ±?11.3; F?=?28, M?=?12; hemoglobin?=?13.4 ± 1.3 g/dL). Voxel-wise changes in WM brain volumes were compared to hemoglobin levels to identify brain regions that are vulnerable to anemia. White matter volume was diffusely lower in deep, watershed areas proportionally to anemia severity. After controlling for age, sex, and hemoglobin level, brain volumes were independent of disease. WM volume loss was associated with lower Full Scale Intelligence Quotient (FSIQ; P =?.0048; r2 =?.18) and an abnormal burden of silent cerebral infarctions (P =?.029) in males, but not in females. Hemoglobin count and cognitive measures were similar between subjects with and without white-matter hyperintensities. The spatial distribution of volume loss suggests chronic hypoxic cerebrovascular injury, despite compensatory hyperemia. Neurocognitive consequences of WM volume changes and silent cerebral infarction were strongly sexually dimorphic. Understanding the possible neurological consequences of chronic anemia may help inform our current clinical practices.
Project description:BackgroundResearch in older adults with subjective cognitive decline (SCD) has mainly focused on Alzheimer's disease (AD)-related MRI markers, such as hippocampal volume. However, small vessel disease (SVD) is currently established as serious comorbidity in dementia and its preliminary stages. It is therefore important to examine SVD markers in addition to AD markers in older adults presenting with SCD.ObjectiveThe aim of our study was to elucidate the role of SVD markers in late middle-aged to older adults with and without SCD in addition to the commonly found role of AD markers (hippocampal volume).Methods67 healthy late middle-aged to older adults participated in this study (mean age 68 years); 25 participants with SCD and 42 participants without SCD. We evaluated quantitative as well as qualitative AD markers (i.e., hippocampal volume and medial temporal lobe atrophy (MTA) scale) and SVD markers (i.e., white matter hyperintensities (WMH) volume, Fazekas scale, microbleeds, and lacunar infarcts), and neuropsychological function and amount of memory complaints.ResultsWe found a significant effect of SCD on hippocampal atrophy, as assessed using the MTA scale, but not on hippocampal volume. In addition, we found a significant effect of SCD, and amount of memory complaints, on WMH volume and Fazekas score, suggesting larger WMH volumes in participants with SCD.ConclusionSVD MRI markers are related to amount of memory complaints, in addition to the commonly observed AD MRI markers, as demonstrated by the greater WMHs in healthy late middle-aged to older adults with SCD.
Project description:Despite increasing knowledge about the effects of phenylketonuria on brain structure and function, it is uncertain whether white matter microstructure is affected and if it is linked to patients' metabolic control or cognitive performance. Thus, we quantitatively assessed white matter characteristics in adults with phenylketonuria and assessed their relationship to concurrent brain and blood phenylalanine levels, historical metabolic control and cognitive performance. Diffusion tensor imaging and 1H spectroscopy were performed in 30 adults with early-treated classical phenylketonuria (median age 35.5 years) and 54 healthy controls (median age 29.3 years). Fractional anisotropy and mean, axial and radial diffusivity were investigated using tract-based spatial statistics, and white matter lesion load was evaluated. Brain phenylalanine levels were measured with 1H spectroscopy whereas concurrent plasma phenylalanine levels were assessed after an overnight fast. Retrospective phenylalanine levels were collected to estimate historical metabolic control, and a neuropsychological evaluation assessed the performance in executive functions, attention and processing speed. Widespread reductions in mean diffusivity, axial diffusivity and fractional anisotropy occurred in patients compared to controls. Mean diffusivity and axial diffusivity were decreased in several white matter tracts and were most restricted in the optic radiation (effect size rrb = 0.66 to 0.78, P < 0.001) and posterior corona radiata (rrb = 0.83 to 0.90, P < 0.001). Lower fractional anisotropy was found in the optic radiation and posterior corona radiata (rrb = 0.43 to 0.49, P < 0.001). White matter microstructure in patients was significantly associated with cognition. Specifically, inhibition was related to axial diffusivity in the external capsule (rs = -0.69, P < 0.001) and the superior (rs = -0.58, P < 0.001) and inferior longitudinal fasciculi (rs = -0.60, P < 0.001). Cognitive flexibility was associated with mean diffusivity of the posterior limb of the internal capsule (rs = -0.62, P < 0.001), and divided attention correlated with fractional anisotropy of the external capsule (rs = -0.61, P < 0.001). Neither concurrent nor historical metabolic control was significantly associated with white matter microstructure. White matter lesions were present in 29 out of 30 patients (96.7%), most often in the parietal and occipital lobes. However, total white matter lesion load scores were unrelated to patients' cognitive performance and metabolic control. In conclusion, our findings demonstrate that white matter alterations in early-treated phenylketonuria persist into adulthood, are most prominent in the posterior white matter and are likely to be driven by axonal damage. Furthermore, diffusion tensor imaging metrics in adults with phenylketonuria were related to performance in attention and executive functions.
Project description:BackgroundClonal hematopoiesis of indeterminate potential (CHIP) increases the risk of cerebrovascular events, while its association with cerebral white matter hyperintensity (WMH) is undemonstrated. We evaluated the effect of CHIP and its major driving mutations on cerebral WMH severity.MethodsFrom an institutional cohort of a routine health check-up program with a DNA repository database, subjects who were ≥50 years of age, with one or more cardiovascular risk factors but no central nervous system disorder, and performed brain MRI were included. Along with the presence of CHIP and its major driving mutations, clinical and laboratory data were obtained. WMH volume was measured in total, periventricular, and subcortical regions.ResultsAmong the total 964 subjects, 160 subjects were classified as CHIP positive group. CHIP was most frequently associated with DNMT3A mutation (48.8%), followed by TET2 (11.9%) and ASXL1 (8.1%) mutations. Linear regression analysis adjusting for age, sex, and conventional cerebrovascular risk factors suggested that CHIP with DNMT3A mutation was associated with the lower log-transformed total WMH volume, unlike other CHIP mutations. When classified according to variant allele fraction (VAF) value of DNMT3A mutation, higher VAF classes were associated with the lower log-transformed total WMH and the lower log-transformed periventricular WMH volume, but not with the log-transformed subcortical WMH volumes.ConclusionsClonal hematopoiesis with DNMT3A mutation is quantitatively associated with a lower volume of cerebral WMH, especially in the periventricular region. CHIP with DNMT3A mutation might have a protective role in the endothelial pathomechanism of WMH.
Project description:BackgroundMounting evidence links poor sleep quality with a higher risk of late-life dementia. However, the structural and cognitive correlates of insomnia are still not well understood. The study aims were to characterize the cognitive performance and brain structural pattern of cognitively unimpaired adults at increased risk for Alzheimer's disease (AD) with insomnia.MethodsThis cross-sectional study included 1683 cognitively unimpaired middle/late-middle-aged adults from the ALFA (ALzheimer and FAmilies) study who underwent neuropsychological assessment, T1-weighted structural imaging (n = 366), and diffusion-weighted imaging (n = 334). The World Health Organization's World Mental Health Survey Initiative version of the Composite International Diagnostic Interview was used to define the presence or absence of insomnia. Multivariable regression models were used to evaluate differences in cognitive performance between individuals with and without insomnia, as well as potential interactions between insomnia and the APOE genotype. Voxel-based morphometry and tract-based spatial statistics were used to assess between-group differences and potential interactions between insomnia and the APOE genotype in gray matter volume and white matter diffusion metrics.ResultsInsomnia was reported by 615 out of 1683 participants (36.5%), including 137 out of 366 (37.4%) with T1-weighted structural imaging available and 119 out of 334 (35.6%) with diffusion-weighted imaging. Individuals with insomnia (n = 615) performed worse in executive function tests than non-insomniacs and displayed lower gray matter volume in left orbitofrontal and right middle temporal cortex, bilateral precuneus, posterior cingulate cortex and thalamus, higher gray matter volume in the left caudate nucleus, and widespread reduction of mean and axial diffusivity in right hemisphere white matter tracts. Insomnia interacted with the APOE genotype, with APOE-ε4 carriers displaying lower gray matter volumes when insomnia was present, but higher volumes when insomnia was not present, in several gray matter regions, including the left angular gyrus, the bilateral superior frontal gyri, the thalami, and the right hippocampus.ConclusionsInsomnia in cognitively unimpaired adults at increased risk for AD is associated to poorer performance in some executive functions and volume changes in cortical and subcortical gray matter, including key areas involved in Alzheimer's disease, as well as decreased white matter diffusivity.
Project description:Reduced sleep duration and sleep deprivation have been associated with cognitive impairment as well as decreased white matter integrity as reported by experimental studies. However, it is largely unknown whether differences in sleep duration and sleep quality might affect microstructural white matter and cognition. Therefore, the present study aims to examine the cross-sectional relationship between sleep duration, sleep quality, and cognitive performance in a naturalistic study design, by focusing on the association with white matter integrity in a large sample of healthy, young adults. To address this, 1,065 participants, taken from the publicly available sample of the Human Connectome Project, underwent diffusion tensor imaging. Moreover, broad cognitive performance measures (NIH Cognition Toolbox) and sleep duration and quality (Pittsburgh Sleep Quality Index) were assessed. The results revealed a significant positive association between sleep duration and overall cognitive performance. Shorter sleep duration significantly correlated with fractional anisotropy (FA) reductions in the left superior longitudinal fasciculus (SLF). In turn, FA in this tract was related to measures of cognitive performance and was shown to significantly mediate the association of sleep duration and cognition. For cognition only, associations shift to a negative association of sleep duration and cognition for participants sleeping more than 8 hr a day. Investigations into subjective sleep quality showed no such associations. The present study showed that real-world differences in sleep duration, but not subjective sleep quality are related to cognitive performance measures and white matter integrity in the SLF in healthy, young adults.
Project description:Improvements in behavior are known to be accompanied by both structural and functional changes in the brain. However, whether those changes lead to more general improvements, beyond the behavior being trained, remains a contentious issue. We investigated whether training on one of two cognitive tasks would lead to either near transfer (that is, improvements on a quantifiably similar task) or far transfer (that is, improvements on a quantifiably different task), and furthermore, if such changes did occur, what the underlying neural mechanisms might be. Healthy adults (n = 16, 15 females) trained on either a verbal inhibitory control task or a visuospatial working memory task for 4 weeks, over the course of which they received five diffusion tensor imaging scans. Two additional tasks served as measures of near and far transfer. Behaviorally, participants improved on the task that they trained on, but did not improve on cognitively similar tests (near transfer), nor cognitively dissimilar tests (far transfer). Extensive changes to white matter microstructure were observed, with verbal inhibitory control training leading to changes in a left-lateralized network of frontotemporal and occipitofrontal tracts, and visuospatial working memory training leading to changes in right-lateralized frontoparietal tracts. Very little overlap was observed in changes between the two training groups. On the basis of these results, we suggest that near and far transfer were not observed because the changes in white matter tracts associated with training on each task are almost entirely nonoverlapping with, and therefore afford no advantages for, the untrained tasks.
Project description:ObjectiveThere are minimal data directly comparing plasma neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) in aging and neurodegenerative disease research. We evaluated associations of plasma NfL and plasma GFAP with brain volume and cognition in two independent cohorts of older adults diagnosed as clinically normal (CN), mild cognitive impairment (MCI), or Alzheimer's dementia.MethodsWe studied 121 total participants (Cohort 1: n = 50, age 71.6 ± 6.9 years, 78% CN, 22% MCI; Cohort 2: n = 71, age 72.2 ± 9.2 years, 45% CN, 25% MCI, 30% dementia). Gray and white matter volumes were obtained for total brain and broad subregions of interest (ROIs). Neuropsychological testing evaluated memory, executive functioning, language, and visuospatial abilities. Plasma samples were analyzed in duplicate for NfL and GFAP using single molecule array assays (Quanterix Simoa). Linear regression models with structural MRI and cognitive outcomes included plasma NfL and GFAP simultaneously along with relevant covariates.ResultsHigher plasma GFAP was associated with lower white matter volume in both cohorts for temporal (Cohort 1: β = -0.33, p = .002; Cohort 2: β = -0.36, p = .03) and parietal ROIs (Cohort 1: β = -0.31, p = .01; Cohort 2: β = -0.35, p = .04). No consistent findings emerged for gray matter volumes. Higher plasma GFAP was associated with lower executive function scores (Cohort 1: β = -0.38, p = .01; Cohort 2: β = -0.36, p = .007). Plasma NfL was not associated with gray or white matter volumes, or cognition after adjusting for plasma GFAP.ConclusionsPlasma GFAP may be more sensitive to white matter and cognitive changes than plasma NfL. Biomarkers reflecting astroglial pathophysiology may capture complex dynamics of aging and neurodegenerative disease.
Project description:Apolipoprotein E (APOE) increases the risk for Alzheimer’s disease (?4 allele) and cerebral amyloid angiopathy (?2 and ?4), but its role in small vessel disease (SVD) is debated. Here we studied the effects of APOE on white matter hyperintensity volume (WMHV) in CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy), a nonamyloidogenic angiopathy and inherited early-onset form of pure SVD. Four hundred and eighty-eight subjects were recruited through a multicenter consortium. Compared with APOE ?3/?3, WMHV was increased in APOE ?2 (P?=?0.02) but not APOE ?4. The results remained significant when controlled for genome-wide genetic background variation. Our findings suggest a modifying influence of APOE ?2 on WMHV caused by pure SVD.
Project description:To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a data-driven machine-learning approach. We analysed two independent cohorts (KORA and SHIP). WMH volumes were derived from cMRI-images (FLAIR). 90 (KORA) and 34 (SHIP) potential determinants of WMH including measures of diabetes, blood-pressure, medication-intake, sociodemographics, life-style factors, somatic/depressive-symptoms and sleep were collected. Elastic net regression was used to identify relevant predictor covariates associated with WMH volume. The ten most frequently selected variables in KORA were subsequently examined for robustness in SHIP. The final KORA sample consisted of 370 participants (58% male; age 55.7 ± 9.1 years), the SHIP sample comprised 854 participants (38% male; age 53.9 ± 9.3 years). The most often selected and highly replicable parameters associated with WMH volume were in descending order age, hypertension, components of the social environment (i.e. widowed, living alone) and prediabetes. A systematic machine-learning based analysis of two independent, population-based cohorts showed, that besides age and hypertension, prediabetes and components of the social environment might play important roles in the development of WMH. Our results enable personal risk assessment for the development of WMH and inform prevention strategies tailored to the individual patient.